• Title/Summary/Keyword: synchronized sensing

Search Result 28, Processing Time 0.024 seconds

Synchronized sensing for wireless monitoring of large structures

  • Kim, Robin E.;Li, Jian;Spencer, Billie F. Jr;Nagayama, Tomonori;Mechitov, Kirill A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.885-909
    • /
    • 2016
  • Advances in low-cost wireless sensing have made instrumentation of large civil infrastructure systems with dense arrays of wireless sensors possible. A critical issue with regard to effective use of the information harvested from these sensors is synchronized sensing. Although a number of synchronization methods have been developed, most provide only clock synchronization. Synchronized sensing requires not only clock synchronization among wireless nodes, but also synchronization of the data. Existing synchronization protocols are generally limited to networks of modest size in which all sensor nodes are within a limited distance from a central base station. The scale of civil infrastructure is often too large to be covered by a single wireless sensor network. Multiple independent networks have been installed, and post-facto synchronization schemes have been developed and applied with some success. In this paper, we present a new approach to achieving synchronized sensing among multiple networks using the Pulse-Per-Second signals from low-cost GPS receivers. The method is implemented and verified on the Imote2 sensor platform using TinyOS to achieve $50{\mu}s$ synchronization accuracy of the measured data for multiple networks. These results demonstrate that the proposed approach is highly-scalable, realizing precise synchronized sensing that is necessary for effective structural health monitoring.

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond

  • Lee, Junghyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.

Middleware services for structural health monitoring using smart sensors

  • Nagayama, T.;Spencer, B.F. Jr.;Mechitov, K.A.;Agha, G.A.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.119-137
    • /
    • 2009
  • Smart sensors densely distributed over structures can use their computational and wireless communication capabilities to provide rich information for structural health monitoring (SHM). Though smart sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale structures has been limited. Hardware resources available on smart sensors restrict data acquisition capabilities; intrinsic to these wireless systems are packet loss, data synchronization errors, and relatively slow communication speeds. This paper addresses these issues under the hardware limitation by developing corresponding middleware services. The reliable communication service requires only a few acknowledgement packets to compensate for packet loss. The synchronized sensing service employs a resampling approach leaving the need for strict control of sensing timing. The data aggregation service makes use of application specific knowledge and distributed computing to suppress data transfer requirements. These middleware services are implemented on the Imote2 smart sensor platform, and their efficacy demonstrated experimentally.

Synchronized Sampling Structure applied HW/SW platform for LAN-based Digital Substation Protection (LAN 기반 디지털 변전소 보호를 위한 동기 샘플링 구조적용 HW/SW 플랫폼 기술)

  • Son, Kyou Jung;Nam, Kyung-Deok;An, Gi Sung;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.178-185
    • /
    • 2020
  • This paper proposes precise time synchronization-based synchronized sampling structure applied HW/SW platform for LAN-based protection of future digital substations. The integrated software of the proposed platform includes IEC 61850 protocol, IEEE 1588 precision time protocol and synchronized sampling structure. The proposed platform expected to provide a basis of an application of future distributed sensing data-based protection and control methods by providing synchronized measurement among IEDs. The implementation of the proposed HW/SW platform technique was performed using TMDXIDK572 multi-core/multi-processor evaluation module and its time synchronization performance and synchronized sampling function were confirmed through the performance tests.

Spectrum Sensing for Cognitive Radio Networks Based on Blind Source Separation

  • Ivrigh, Siavash Sadeghi;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.613-631
    • /
    • 2013
  • Cognitive radio (CR) is proposed as a key solution to improve spectral efficiency and overcome the spectrum scarcity. Spectrum sensing is an important task in each CR system with the aim of identifying the spectrum holes and using them for secondary user's (SU) communications. Several conventional methods for spectrum sensing have been proposed such as energy detection, matched filter detection, etc. However, the main limitation of these classical methods is that the CR network is not able to communicate with its own base station during the spectrum sensing period and thus a fraction of the available primary frame cannot be exploited for data transmission. The other limitation in conventional methods is that the SU data frames should be synchronized with the primary network data frames. To overcome the above limitations, here, we propose a spectrum sensing technique based on blind source separation (BSS) that does not need time synchronization between the primary network and the CR. Moreover, by using the proposed technique, the SU can maintain its transmission with the base station even during spectrum sensing and thus higher rates are achieved by the CR network. Simulation results indicate that the proposed method outperforms the accuracy of conventional BSS-based spectrum sensing techniques.

Comparison of an ultrasonic distance sensing system and a wire draw distance encoder in motion monitoring of coupled structures

  • Kuanga, K.S.C.;Hou, Xiaoyan
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Coupled structures are widely seen in civil and mechanical engineering. In coupled structures, monitoring the translational motion of its key components is of great importance. For instance, some coupled arms are equipped with a hydraulic piston to provide the stiffness along the piston axial direction. The piston moves back and forth and a distance sensing system is necessary to make sure that the piston is within its stroke limit. The measured motion data also give us insight into how the coupled structure works and provides information for the design optimization. This paper develops two distance sensing systems for coupled structures. The first system measures distance with ultrasonic sensor. It consists of an ultrasonic sensing module, an Arduino interface board and a control computer. The system is then further upgraded to a three-sensor version, which can measure three different sets of distance data at the same time. The three modules are synchronized by the Arduino interface board as well as the self-developed software. Each ultrasonic sensor transmits high frequency ultrasonic waves from its transmitting unit and evaluates the echo received back by the receiving unit. From the measured time interval between sending the signal and receiving the echo, the distance to an object is determined. The second distance sensing system consists of a wire draw encoder, a data collection board and the control computer. Wire draw encoder is an electromechanical device to monitor linear motion by converting a central shaft rotation into electronic pulses of the encoder. Encoder can measure displacement, velocity and acceleration simultaneously and send the measured data to the control computer via the data acquisition board. From experimental results, it is concluded that both the ultrasonic and the wire draw encoder systems can obtain the linear motion of structures in real-time.

A Brushless DC Motor Drive System and Phase Current Estimation Method For Active Knee Prothesis (동력의지를 위한 BLDCM 구동 시스템 및 상전류 추정 기법)

  • Nam, K.J.;Choi, Y.B.;Jung, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this paper, we propose a brushless DC motor drive system for active knee prosthesis and low-cost estimation method for phase current from DC-link current. To control motor torque directly, current sensing is very important and current sensing point should be synchronized with voltage switching command to minimize the effect of switching noise in current measurement, For maintaining small form factor, simplifying control schemes and achieving low-cost system, control schemes using DC-link current are used. Moreover, we incorporated phase current estimation method using analog MUX for minimizing current estimation error between DC-link current and phase current. The validity of the proposed system is verified through experimental works.

  • PDF

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Empathy Evaluation Method Using Micro-movement (인체 미동을 이용한 공감도 평가 방법)

  • Hwang, Sung Teac;Park, SangIn;Won, Myoung Ju;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • The goal of this study is to present quantification method for empathy. The micro-movement technology (non-contact sensing method) was used to identify empathy level. Participants were first divided into two groups: Empathized and not empathized. Then, the upper body data of participants were collected utilizing web-cam when participants carried expression tasks. The data were analyzed and categorized into 0.5 Hz, 1 Hz, 3 Hz, 5 Hz, 15 Hz. The average movement, variation, and synchronization of the movement were then compared. The results showed a low average movement and variation in a group who empathized. Also, the participants, who empathized, synchronized their movement during the task. This indicates that the people concentrates with each other when empathy has been established and show different levels of movement. These findings suggest the possibility of empathy quantification using non-contact sensing method.

HIGH-SPEED SOFTWARE FRAME SYNCHRONIZER USING CIRCULAR BUFFER

  • Koo, In-Hoi;Ahn, Sang-II;Kim, Tae-Hoon;SaKong, Young-Bo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.228-231
    • /
    • 2008
  • For a satellite data communication, the technology of frame synchronization is widely used between a sender and a receiver. Last year, we suggested zero-loss frame synchronization [1] using pattern search and using bits threshold search algorithm that is based on SIMD technology [2,3]. This algorithm could solve both of hardware and software drawbacks, which are frame loss and low processing performance. However, this algorithm didn't optimize the processing of output data, synchronized data, which caused overhead to the memory allocation and the memory copy. Consequently, the performance of the frame synchronizer application was degraded. In this paper, we enhance previous work using a circular buffer in order to optimize the output data processing. The performance comparison with the previous algorithm shows that the enhanced proposed approach dramatically outperforms in the output data processing speed.

  • PDF