HIGH-SPEED SOFTWARE FRAME SYNCHRONIZER USING
CIRCULAR BUFFER

In-Hoi KOO', Sang-Il Ahn', Tae-Hoon Kim?, and Young-Bo Sakong?

Satellite Mission Operation Department, Korea Aerospace Research Institute'
freewill@kari.re.kr!, siahn@kari.re kr'
SOLETOP Inc. Satellite Image Dept. 2
freekid99@soletop.com?, ybsakong@soletop.com?

ABSTRACT: For a satellite data communication, the technology of frame synchronization is widely used between a
sender and a receiver. Last year, we suggested zero-loss frame synchronization [1] using pattern search and using bits
threshold search algorithm that is based on SIMD technology [2,3]. This algorithm could solve both of hardware and
software drawbacks, which are frame loss and low processing performance. However, this algorithm didn’t optimize the
processing of output data, synchronized data, which caused overhead to the memory allocation and the memory copy.
Consequently, the performance of the frame synchronizer application was degraded.

In this paper, we enhance previous work using a circular buffer in order to optimize the output data processing. The
performance comparison with the previous algorithm shows that the enhanced proposed approach dramatically
outperforms in the output data processing speed.

KEY WORDS: CCSDS, Frame Synchronization, SSE2, Circular Buffer

1. INTRODUCTION It has four kinds of states; Search, Check, Lock,
Flywheel State. The explanation of each states of Figure 1

The communication between satellite and ground g as follows.

station has been changed from analogue communication
to digital communication. The CCSDS (Consultative
Committee for Space Data Systems) recommended some .
standards such as [4] for digital communications between H
satellite and ground station. In current satellite :
communication, the satellite sends huge data to the
ground station. Therefore, the ground station should
possess huge data processing capability.

The zero-loss frame synchronization we proposed in
[1] solved the problem of slow processing and the
problem of data loss is from hardware process. It
enhanced the deficiencies of low speed software

Searched Frame Sync. Marker

Increase
Check Count

Satisfied
Check Count

Run over H
Flywheel Count ;

processing using the SSE2 [2,3] and using the pattern ;
search. It also minimized frame loss with Pending Buffer. '
This approach, although effective in terms of speed and 5
Increase "~--

frame loss, didn’t give an attention to the data processing
after frame synchronization.

Thus in this paper, using a circular buffer, we optimize
data processing. The enhanced frame synchronizer is
described in detailed in the section 4.

Flywheel Count

—— Correct Q Not Saved or Transmitted

_____ » Incorrect Saved or Transmitted

Figure 1 Frame Synchronization Final State Diagram
2. FRAME SYNCHRONIZATION & SSE2 First of all, in Search State, we look for the Frame
Synchronize Marker (hereafter, FSM) in the incoming
data. The incoming data is being shifted by unit of a bit

2.1 Frame Synchronization

The frame synchronization is to align incoming frame
in continuous bit stream by indicating the start or stop of
frame with a special bit combination.

until we find the FSM which can be varied according to
modulation methods. All possible values are compared
with the incoming data and finally we can detect the FSM
which does not exceed the bit error threshold. When FSM
is successfully searched, the state is transited to Check
State.

-228 -

Check State detects the FSM in the unit of a frame
using pre-detected FSM in Search State. When the FSM
detection is successful w.r.t. the configured check count
number, the state is transited to Lock State. If not, the
state goes back to the Search State.

Like Check state, Lock State detects the FSM in the
incoming data with the unit of a frame. When FSM is
detected, detected frame is saved or transferred to next
step. If not, it triggers the start of Flywheel state.

Flywheel State tries the FSM detection with the size of
frame. When FSM detection fails, the flywheel count
value increases by 1. If the flywheel count value exceeds
the predefined value, the state goes back to Search State.
When FSM detection is done, the state jumps to Lock
State. In Lock State, the frame data is saved or transferred
to next processing step.

2.2 SSE2 (Streaming SIMD Extensions2)

The Sinlge-Insturction Multiple-Data (SIMD) can be
applied in a loop whose instruction is repeated. The
performance of SIMD can be improved if SIMD when the
incoming data is arranged in a row like Figure 2: SSE2.

Thanks to the SSE2, just single instruction can be used
to the iterative loops with multiple incoming data.

Instruction

]
HEE
EHEE

Data

Results

Figure 2 SIMD Processing

3. ASSUMPTIONS IN IMPLEMENTATION

3.1 Bit Pattern

We can classify all possible Bit Pattern into five
according to the

patterns of Table 1
recommendations.

CCSDS

For non-turbo

coded data 1ACFFCID

For rate-1/2 turbo 1 44 7267272895B0

coded data

Forrate-13 turbo | 535 -0 CE8990F6C9461BF79C
coded data

For rate-1/4 turbo | 034776C7272895B0

coded data FCB88938DSD76A4F

For rate-1/6 turbo | 25D5COCE8990F6C9461BF79C
coded data DA2A3F31766F0936BOE40863

Table 1 Frame Synchronization Bit Patterns

In this paper, the Turbo Coding is not applied to the
simple 32bit FSM value of “1 ACFFC1D”. Figure 3 shows
bit pattern in FSM without Turbo Coding.

First Transmitted Bit
(Bit 0)

Last Transmitted Bit
(Bit 31)

0001 1010 1100 111 1111 1100 0001 1101

Figure 3 FSM for non-turbo coded data

3.2 Modulation/Demodulation

It is Quadrature Phase Shift Keying (QPSK) that is
widely used modulation scheme of data transmission in
existing satellites such as MTSAT-1R, MSG, METOP,
and KOMPSAT. The QPSK, one of Phase Shift Keying
(PSK), uses 4 phase values to express the 2bits
information; 0°, 90°, 180°, 270°.

4. PERFORMANCE ENHANCEMENT
4.1 Pending Buffer

The concept of Pending Buffer is to prevent any data
loss when new data is arrived before the FSM Search
State is not completed on the previous data.

In Figure 4, Input Data#l is current data under
processing and Input Data#2 is next data to be processed.
When Search State frame and Check State frame are in
Input Data#1, two frames in the red box are copied to the
Pending Buffer and then FSM search is continued.

4
cJ

s
Input Data #1 [s_c]

Pending Buffer

1 Frame

Input Data #2
Figure 4 Pending Buffer

4.2 Pattern Search

Pattern Search is to check whether identical bits stream
is repeated within the incoming data. When the satellite
does not transmit any data, the pattern of incoming data
from receiver to serial telemetry card is “00” or “FF.” In
this case, it is not necessary to find FSM in Search State.

-229 -

BitN ... l
]

Lololololal Lol T T T T T T T Tolal
) IS WA IR A NG B B N A A |

ofof [i]]

Figure 5 Pattern Search

Pattern Search saves the first 4byte data and compares
them with next 4byte data after 1bit shift. If these two
values are same, the frame synchronizer assumes no data
is coming from the satellite.

As shown in Figure 5, Search State can easily move to
the value of “1” using Pattern Search. This pattern search
concept is very useful when no data transmission or data
loss situation.

4.3 Bits Threshold with SSE2

In Search State, it’s FSM when the nearest Hamming
distance vathfwlrlue under Bits threshold for 4 possible
FSM in QPSK is FSM. In case of no FSM, 1bit shift
operation and hamming distance calculation continue
until successful FSM search. These two activities of bit
shift and hamming distance calculation require huge
computational load.

SSE2 was applied to quick comparison between input
data and 4 possible FSM values. With SSE2 technology,
simple one instruction command lead equivalent effects
obtained 4 times individual commands.

Consequently, FSM can be detected by comparing the
bit threshold value and FSM Hamming distance after
calculating.

To apply the SSE2 in bit threshold comparison
sequence, all 4 possible FSM value of “1ACFFCID”
were calculated in advance and saved in XMM1 register
and 4 bytes of data in input data buffer was saved in
XMM2 register up to 4 times and finally Hamming
distance calculation between these two XMM were
calculated.

When the Hamming distance is less than the Bits
threshold, we can see FSM detection was successful. But
when there is no Hamming distance less than threshold,
the 1bit shift operation is done and the new Hamming
distance calculation and comparison sequence is started
until successful FSM detection.

Using 128-bit XMM register, 4 of phase values are
compared with just 1 instruction command and simply we
can expect 4-times higher processing power from
calculation load’s point a view.

Figure 6 shows an example of bits threshold calculation
using SSE2.

4-byte value of Input Data Buffer is 0x4F9AA948,
XMM1 includes 4 kinds of FSM for different phases.
XMM?2 includes 4 times 4-byte data of 0x4F9AA948.
XMM! and XMM2 are just exclusive OR-ed and its
results are recorded in XMMO and its hamming distance
was calculated. If value of 2 is configured to bits
threshold, the 4-byte of FSM showing its Hamming
distance under value of 2 is FSM. In Figure 6, phase is
90° and FSM value is 0x4F9AA948.

Phase: 0° 90° 180° 270°
XMM1 | OXIACFFCID | Ox4F9AA948 j 0xBOG55687 3 OXE53003E2 k— FSM of Phase
D
XMM2 | 0xFoAA948 | OxAFOAAMS | Ox4FOAAGAE | 0x4F9AAGAB ¥<— Input Data
XMMO i 0X55555555 [0x00000000 | OXFFFFFFFF jc»xAAAAAAAA!
Hamming Distance: 16 0 32 16

Figure 6 Bits Threshold using SSE2

5. OUT BUFFER HANDLING
5.1 Linked List

The process of Frame Synchronization had a Linked List for
handling Out buffer as showing figure 7.

Lined List is possible to assign the memory and dynamic
assignment of memory so it is easy to delete the date, insert the
data because it is able to use the memory efficiently.

i Next

Figure 7 Linked List structure

Sometimes Linked List makes lowering of capacity
because of Overhead which is caused by excessive
assigning memory or cancellations in a satellite system.

The defects are that the algorism is complicated and
storing place is not enough for keeping the pointer.

5.2 Circular Buffer

Circular Buffer is the way of carrying in put and out
put by setting the size of Buffer and composing Buffer as
a model.

Start point and End point are used to indicate Frame’s
site. Multithreading itself is possible to accomplish
completing buffer and empting the buffer because it
handle buffer by Start/End point.

And it brings improvement of capacity because
Overhead is not happened.

E Start

Frame 1 §

=

i Frame 2

§
§

"Fréme 5 et
Synchronization Frame 3)
g 7
{ Framed | End | Frame4 |
‘ 7
i : Frame® 0
wwwww — (AT

-230-

Figure 7 Circular Buffer structure

Start

Frame 4
Frame 2
Frame 3
Frame 4

End

Figure 8 Thread working of Fame Synchronization

As the figure 8 is showing when the two Threads are
acting Frame Synchronization is acting as showing the
figure 9.

Check space of

Circular Buffer
No)

4&:‘;? Thiead A is

\ waiting

Yes i

Thread B get
output data from
Frame Sync.

Check space of
Circutar Buffer

o

r’/
<Js it Enoug@—ge—

Wake up
Thread A

Thread A input data
into Frame Sync.

Thread B get
output data from

Frame Sync.
Figure 9 Block Diagram of Frame Synchronization

6. PERFORMANCE ASSESSMENT

The processing speed for (1) Frame Synchronization
Software with SSE2 and (2) Frame Synchronization
Software without SSE2 were measured. The computer
specification for test was shown in Table 2.

CPU Intel Core2 Duo E6700
Memory 2GB
oS Windows XP

Table 2 Test Environment

256-byte of Frame data were used for input test data.
Input file was made of multiple number of 256-byte frame
data. Input file data was fed into software using
configurable speed from 48.8Mbytes to 488.3Mbytes for
simulating real operational environment,

—&-— Ng Circular Buffer |

—— Circular Buffer

o

800.0

700.0
600.0
500.0

Data Rate
Mbps) 4000
300.0
200.0

100.0

0.0

1 2 3 4 5 6 7 8 9 L

1

E—O-‘Cj_;tuhanﬁ‘er 735.6 7356 | 7279 | 7348 | 7310 | 7320 | 732.1 {7273 | 7259 | 72638 |
| Z+—No Circular Buffer| 301 | 292 | 298 | 279 | 300 | 303 | 317 | 310 | 309 | 314 |

Figure 7 Compare Between Applied SSE2 and Not-
applied SSE2

From test results, Average speed for Circular Buffer
case reached to about 730.9Mbytes while the speed for
non-Circular Buffer case reached to 302.3Mbps.

This means Circular Buffer case shows 2.4 times higher
performance than non-Circular Buffer case

7. CONCLUTION

This paper shows the optimizing method for frame
synchronizing output data by the software using circular
buffer and the solution of the cause of overhead problem
by using the existing method. The high speed software
frame synchronizer with SSE2 can provide several
benefits like expandability and update which is, in fact,
inherent to software. And Multithreading is possible to
prevent Overhead caused by an assigning the memory and
cancellation, by applying Circular Buffer in the output
data that is Frame Synchronization.

This study can be applied for communication with
satellite and in other digital communicating field where
the frame Synchronization and Multithreading are needed.

8. REFERENCES

[1] Sang-Il Ahn, In-Hoi KOO, Tae-Hoon Kim, Young-Bo
Sakong/ High-speed software Frame synchronizer using sse2
technology

[2] The Software Vectorization Handbook, Aart J.C.Bik

[3] 1A-32 Intel® Architecture Software Developer’s Manual
Volume 2A: Instruction Set Reference, N-Z

[4] CCSDS, ‘TM Synchronization and Channel Coding’, Issue
1, Sep. 2003

-231 -

