Browse > Article
http://dx.doi.org/10.6564/JKMRS.2020.24.2.059

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond  

Lee, Junghyun (Center for Quantum Information, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.24, no.2, 2020 , pp. 59-65 More about this Journal
Abstract
Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.
Keywords
NV center; quantum sensing; nanoscale-NMR; synchronized readout;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nat. Phys. 4, 810 (2008)   DOI
2 D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth. Nature 496, 486 (2013)   DOI
3 M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, and A. Yacoby. Nat. Phys. 9, 215 (2013)   DOI
4 F. Dolde, H. Fedder, M. W. Doherty, T. Nbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Nat. Phys. 7, 459 (2011)   DOI
5 Matthew J. Turner, Nicholas Langellier, Rachel Bainbridge, Dan Walters, Srujan Meesala, Thomas M. Babinec, Pauli Kehayias, Amir Yacoby, Evelyn Hu, Marko Loncar, Ronald L. Walsworth, Edlyn V. Levine. arXiv 03707 (2020)
6 S. Rajendran, N. Zobrist, A. O. Sushkov, R. L. Walsworth, and M. D. Lukin. Phys. Rev. D 96, 035009 (2017)   DOI
7 L. Robledo, H. Bernien, T. van der Sar, and R. Hanson. New J. Phys. 13, 025013 (2011)   DOI
8 L. Childress. PhD thesis, Harvard University (2006)
9 H. Lee, J. Shim, J. Kor. Magn. Reson. Soc. 22, 40 (2018)   DOI
10 L. P. Lee, K. Char, M. S. Colclough, and G. Zaharchuk, App. Phys. Lett. 59, 3051 (1991)   DOI
11 P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, App. Phys. Lett. 85, 6409 (2004)   DOI
12 J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pahm, and R. L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020)   DOI
13 K. Arai, J. Lee, C. Belthangady, D. R. Glenn, H. Zhang, and R. L. Walsworth, Nat. Comm. 9, 4996 (2018)   DOI
14 K. Arai, C. Belthangady, H. Zhang, N. Bar-Gill, S. J. DeVience, P. Cappellaro, A. Yacoby, R. L. Walsworth, Nat. Nanotechnol. 10, 859 (2015)   DOI
15 S. Zaiser, T. Rendler, I. Jakabi, T. Wolf, S. Lee, S. Wagner, V. Bergholm, T. Schute-Herbruggen, P. Neumann, and J. Wrachtrup, Nat. Comm. 7, 12279 (2016)   DOI
16 N. Aslam, M. Pfender, P. Neumann, R. Reuter, A. Zappe, F. Oliveira, A. Denisenko, H. Sumiya, S. Onoda, J. Isoya, and J. Wrachtrup. Science 10, 1126 (2017)
17 H. Y. Carr and E. M. Purcell. Phys. Rev. 94, 630 (1954)   DOI
18 D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park and R. L. Walsworth, Nature 555, 351 (2018)   DOI
19 S. Oh, J. Kor. Magn. Reson. Soc. 23, 73 (2019)
20 S. Meiboom and D. Gill. Rev. Sci. Instrum. 29, 688 (1958)   DOI
21 J. Lee, PhD thesis, Massachusetts Institute of Technology (2018)
22 L. M. Pham, S. J. DeVience, F. Casola, I. Lovchinsky, A. O. Sushkov, E. Bersin, J. Lee, E. Urbach, P. Cappellaro, H. Park, A. Yacoby, M. Lukin and R. L. Walsworth. Phys. Rev. B 93, 045425 (2016)   DOI
23 S. J. DeViencea, L. M. Pham, I. Lovchinsky, A. O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, and R. L. Walsworth. Nat. Nanotechnol. 10, 129 (2015)   DOI
24 H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar. Science, 339, 557 (2013)   DOI
25 T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup. Science, 339, 561 (2013)   DOI
26 S. M. Alessio. Digital signal processing and spectral analysis for scientists: concepts and applications. Springer (2016)
27 M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg. Phys. Rep. 528, 1 (2013)   DOI
28 P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F. M. Benito, A. Laraoui, J. Smits, L. Bougas, D. Budker, A. Neumann, S. R. J. Brueck, and V. M. Acosta. Nat. Comm. 8, 188 (2017)   DOI
29 A. W. Overhauser, Polarization of Nuclei in Metals, Phys. Rev. 92, 411 (1953)   DOI
30 D. B. Bucher, D. R. Glenn, H. Park, M. D. Lukin, R. L. Walsworth. Phys. Rev. X 10, 021053 (2020)