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Abstract 
 

Cognitive radio (CR) is proposed as a key solution to improve spectral efficiency and 

overcome the spectrum scarcity. Spectrum sensing is an important task in each CR system 

with the aim of identifying the spectrum holes and using them for secondary user's (SU) 

communications. Several conventional methods for spectrum sensing have been proposed 

such as energy detection, matched filter detection, etc. However, the main limitation of these 

classical methods is that the CR network is not able to communicate with its own base station 

during the spectrum sensing period and thus a fraction of the available primary frame cannot 

be exploited for data transmission. The other limitation in conventional methods is that the SU 

data frames should be synchronized with the primary network data frames. To overcome the 

above limitations, here, we propose a spectrum sensing technique based on blind source 

separation (BSS) that does not need time synchronization between the primary network and 

the CR. Moreover, by using the proposed technique, the SU can maintain its transmission with 

the base station even during spectrum sensing and thus higher rates are achieved by the CR 

network. Simulation results indicate that the proposed method outperforms the accuracy of 

conventional BSS-based spectrum sensing techniques. 
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1. Introduction 

In cognitive radio (CR) systems [1], spectrum sensing is a fundamental block for deciding if 

the primary user (PU) is in operation or not. If the spectrum sensing block announces that the 

PU is not in operation, the secondary user (SU) starts utilizing the vacant frequency band and 

transmits its data over that frequency band, opportunistically [2]. There are different methods 

proposed for spectrum sensing in the literature such as energy detection (ED) [3] [4] [5] [6], 

cyclostationary detection and matched filter detection as propose in [7], for instance. In the ED 

method, the received signal energy is measured and compared to a threshold to make a 

decision on the presence/absence of the PU over the desired channel. Cyclostationary 

spectrum sensing uses the statistical properties of signal and noise to detect the presence of the 

PU [7]. If the transmitted PU signal is known, matched filtering is the optimal method for 

detecting the activity of the PU. In this approach, the CR should demodulate the received 

signal; therefore, it requires some PU signaling features such as bandwidth, carrier frequency 

and modulation type [7]. 

Conventional spectrum sensing have two main limitations as described below. The first 

limitation is that the CR should not be in operation during the spectrum sensing period. This is 

due to the fact that conventional spectrum sensing techniques are not able to differentiate 

between primary and cognitive signals and the CR signal would certainly impose an 

interference on the primary network. The second limitation is the requirement of perfect 

synchronization between primary and cognitive frames. More precisely, spectrum sensing is 

performed at the beginning of the PU data frame, while the CR transmitter is not in operation 

during this time. If the spectrum sensing decision is in favor of the absence of the PU, then the 

CR is allowed to transmit over the rest of the PU frame and this forces the CR network to be 

synchronized with PU frames. Obviously, the above limitation reduces the throughput of the 

CR network due to the time dedicated to spectrum sensing. 

Blind source separation (BSS) techniques [8] are recently suggested for spectrum sensing in 

CR systems [8]. The advantage of BSS spectrum sensing is that the CR can maintain its 

transmission even during the spectrum sensing process. Obviously, this is related to the ability 

of BSS techniques to differentiate signals from a mixture of signals. Consequently, higher 

rates can be achieved by the secondary network. Besides, by using BSS, the secondary 

network does not necessarily require to know the beginning of the PU data frame in order to 

force the CR to be inactive and then start the spectrum sensing process. Thus, the secondary 

network can start sensing the PU activity at any time within the primary frame and this relaxes 

the requirement of synchronization between the PU and CR transmitted frames. In [10], BSS is 

used to separate the mixture of signals with different frequency bands. In [11], a BSS-based 

spectrum sensing is applied to separates sensed signals and then with respect to the correlation 

between separated signals, a decision is made about the absence or presence of the PU. In [12], 

BSS is used to estimate the noise variance and to implement blind spectrum sensing. In [13], a 

BSS-spectrum sensing based on independent component analysis (ICA) algorithm is used to 

separate sensed signals and then Kurtosis is used to indicate the statistical properties of 

separated signals. In [14] a novel framework for spectrum sensing is proposed that combines 

BSS spectrum sensing and covariance based spectrum sensing. In [15], the authors have 

proposed a BSS-based spectrum sensing but this work does not consider the practical scenario 

where the PU activity has a dynamic ON/OFF switching. ICA method mesures the negentropy 
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metric of observed signals to seprate the signals, but Kurtosis metric  uses the fourth comulant 

of observed signal to separate them. 

In this paper, we provide a more in depth and complete analysis of our BSS-based spectrum 

sensing compared to our initial contribution [13] that was only based on the ICA algorithm. 

Our aim consists in comparing different widely-adopted BSS techniques and algorithms in 

context of spectrum sensing and finding the technique leading to the most accurate BSS-based 

spectrum sensing technique. We focus on the family of Kurtosis methods for separating the 

sensed signals and determining the properties of the separated signals in order to make a 

decision about the presence or absence of the PU. We provide simulation results in the context 

of CR, to analyze the performance achieved by using the Kurtosis metric in comparison to the 

Negentropy metric that is usually adopted in BSS. In addition, here we propose a dynamic 

algorithm for CR transmitter to transmit its data in dynamic senario. As we will see in Section 

3.2, in the dynamic senario the sensed state of PU in the previous sensing frame determines the 

CR transmitter activity in the current sensing frame. More precisely, the decision about the 

presence or absence of the PU in the ( 1)n  -th frame, affects the transmission or not of the 

CR user in the n -th sensing frame. In fact, we have adopted a methodology in which there are 

some sort of dependency (memory) to the previous frame's decision in the spectrum sensing 

process, that is modeled by a Markov process. As we will see in simulation results, if the state 

of PU in previeous sensing frame, is repeated in the current sensing frame with high 

probability, the performance of the proposed method would be better. This feature constitutes 

the main contribution of our paper since in conventional spectrum sensing methods, the 

performance is independent from the activity model of the PU.  

The rest of this paper is organized as follows. Spectrum sensing problem formulation and 

the assumed system model are presented in Section 2. In Section 3, we give a short description 

of conventional BSS methods proposed for spectrum sensing and then explain our proposed 

methodology. Section 4 provides simulation results and discussions, and finally Section 5 

draws our conclusions. 

2. Spectrum Sensing System Model 

The objective of spectrum sensing in a CR network is to monitor the activity of the primary 

network; i.e., to indicate the presence or absence of the PU. Sensing the presence of PU over a 

specific frequency band is usually viewed as a binary hypothesis testing as:  
 

 
0

1

: PUis not in operation,

: PUis in operation.





H

H
                                  (1) 

 

In the above binary hypothesis, as errors may happen during the sensing process, the real 

state of the PU and the sensed (estimated) state of the PU are not necessarily the same. We 

denote the real state of the PU by 
PU

iH  ( = 0i  means that the PU is not in operation and =1i  

means that the PU is in operation) and denote the sensed state of the PU by 
CN

iH  ( = 0i  it 

means that the PU is sensed as absent and =1i  means that the PU is sensed as present). Thus, 

two different types of errors, referred to as miss detection and false alarm, can be defined. The 

probabilities of these errors are defined as: 
 

0 1= ( | ),CN PU

mP P H H                                                (2) 
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Fig. 1. Considered system model with q  SUs, one PU transmitter and one active SU transmitter. 

 

1 0= ( | ),CN PU

fP P H H                                                 (3) 

 

respectively. Obviously, an accurate spectrum sensing method is characterized by low values 

for fP  and mP  probabilities. 

The considered system architecture is illustrated in Fig. 1. In this network, the CR base 

station operates as a fusion center for cooperative spectrum sensing. When the spectrum 

sensing fusion center indicates the absence of PU, one of the SUs in CR network is allowed to 

send its data, and other SUs continue to sense the channel. The received signal at the j -th SU 

which is in general the superposition of the PU and the active SU signals, can be written as:  
    

 ,1 ,2= ,PN CN

j j j jh h y a a n                                               (4) 

 

where 1 2= [ , , , ]PN PN PN PN

La a aa  is the vector containing L  symbols ( L  is the sensing frame 

length) transmitted by the PU, 1 2= [ , , , ]CN CN CN CN

La a aa  is the vector containing L  symbols 

transmitted by the active SU (simultaneously with the PU symbols), and 

,1 ,2 ,= [ , , , ]j j j j Ln n nn  is the Gaussian complex noise vector distributed as 
2( , )j n L

j
n 0 ICN:  with LI  being the L L  identity matrix. Moreover, ,1jh  is the Rayleigh 

distributed channel between the PU and the j -th SU and ,2jh  is the channel between the 

active SU and the j -th SU with Rayleigh distribution too. 

When the SU is in operation, depending on the two hypothesis 0

PNH  and 1

PNH  

characterizing the activity pf the PU, we have:  
 

 
,2 0

,1 ,2 1

=
.

CN PN

j j

j PN CN PN

j j j

h

h h

 


 

a n
y

a a n

H

H
                                         (5) 

 

Similarly, when the SU is not in operation, we have:  
 

h1,2

h2 2
Active SUSU1 h1,1

h2,2

h3,2 hq,2

h2,1
hq 1

SU2

PU Transmitter

CR Base Stationh3,1

q,1

SU3

SUq
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0

,1 1

=
.

PN

j

j PN PN

j jh






n
y

a n

H

H
                                            (6) 

 

Let us denote the number of SUs by q . For convenience, we rewrite Equations 4 in matrix 

form as:  

 

 = Y HA N                                                         (7) 
 

where  

 

          

1,1 1,2 1, 1

2,1 2,2 2, 2

,1 ,2 ,

= =

L

L

q q q L q

y y y

y y y

y y y

   
   
   
   
   
      

y

y
Y

y

                                      (8) 

 

where ,q ly  is the l -th observed symbol by the q -th SU, and  
 

 
1

2

= =
PU

CR

   
   

  

aa
A

aa
                                                    (9) 

 

and 

 

11 12

1 2

=

q q

h h

h h

 
 
 
 
 

H                                                            (10) 

 

where ijh  is the channel coefficient between SUs and the PU, and 
 

1,1 1,2 1, 1

2,1 2,2 2, 2

,1 ,2 ,

= =

L

L

q q q L q

n n n

n n n

n n n

   
   
   
   
   
      

n

n
N

n

                                        (11) 
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Fig. 2. The block diagram of proposed spectrum sensing method. 

3. Spectrum sensing methodology based on BSS 

In this Section, we aim at explaining the BSS-based spectrum sensing methodology that we 

have adopted in this paper. As shown in Fig. 2, our BSS-based spectrum sensing is composed 

of two subblocks. The first subblock denoted as BSS in Fig. 2, separates the mixture of two 

signals and provides at its output the two separated components. However, it is not clear at the 

output of this block that each component is the primary signal, the CR signal or the ambient 

noise. The second block denoted as source identifier, is used in order to recognize each 

separated component. In what follows, we provide more details about the functionality of each 

subblock and in this way we explain the proposed methodology for spectrum sensing. 

3.1 Blind source separation 

In BSS problems, we have several independent source signals for which we have not any 

information about the power and other parameters. Also, we do not dispose of any information 

about the channel between the sources and the sensors. Obviously, we just dispose of some 

sensors' observations. Each observation is a linear combination of all independent sources. 

Starting from the matrix form of our system model 7, we have:  
 

 = ,Y HA N                                                                  (12) 

 

where Y  is our observation which is the linear combination of independent sources gathered 

in matrix A  and H  is the linear transformation matrix (in our scenario H  is the channel 

matrix) and N  is the Gaussian noise. According to the general methodology adopted in BSS, 

to estimate the source signals, we first have to estimate H  and then we multiply our 

observation vector Y  by the inverse of H . Different algorithms are proposed in the literature 

for estimating the linear transformation matrix H  such as Independent Component Analysis 

(ICA) [16], Multiuser Kurtosis algorithm (MUK) [17], Trilinear Alternating Least Squares 

(TALS) and improved version of that called comfac [18][19], TFBSS (Blind Source 

Separation Using Time Frequency Distributions) [20] for instance. In this paper, we aim at 

comparing the performance achieved by each of the above methods in order to identify the 

method leading to the the more accurate spectrum sensing in the context of CR systems. In 

Equation 12, without considering the noise for the moment we get:  
 

 =Y HA                                                                      (13) 
 

After some preprocessing (centering and whitening) of data, by multiplying the observation 

matrix by the equalization matrix W , we get:  
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 = = ( ) = ( )Z WY W HA WH A                                                 (14) 

 

The ideal case for equalization is when =WH I  where I  is the identity matrix. There are 

several algorithms to estimate the matrix W  of size 2 q . The general solution to find the 

matrix W  is to define a cost function for matrix Z  and try to minimize (or maximize) the 

defined cost function. Each defined cost function and the way to maximize (or minimize) leads 

to a different BSS method. Defining the cost function is based on our assumption about the 

independent sources. For example, the main assumption for sources could be their 

non-Gaussianity. 

Independent component analysis (ICA) uses the Negentropy metric to measure the 

non-Gaussian property of the source signal [8]. Negentropy is based on the information 

theoretic quantity of (differential) entropy. Let us define iw  as the i -th row of matrix W . 

Then the entropy of random vector iw Y  with each entry being identically distributed 

following the probability density function (pdf) ( )ip   defined as:  
 

( ) = ( ) log( ( )) .i i iEntropy p p d  w Y                                          (15) 

 

 Entropy shows the unpredictability of a random variable; the more random or unpredictable 

a random variable, the larger entropy it has. It could be shown that in all of the random 

variables with unit variance, Gaussian random variable has the most entropy. So we define 

Negentropy as: 

 

 ( ) = ( ) ( )i gauss iJ Entropy y Entropyw Y w Y                                     (16) 

 

where gaussy  is a Gaussian random variable with the same covariance matrix with iw Y . 

Negentropy is always positive, and it is zero if and only if iw Y  has a Gaussian distribution. 

Negentropy is a suitable way for measuring the non-Gaussian property, but it is difficult to 

compute, therefore the approximation of the Negentropy is usually used. It can be shown that 

one of the approximations of Negentropy is [21] [8]: 

 

 
2( ) [ { ( )} { ( )}]i iJ E G E G  w Y w Y                                       (17) 

 

where (.)G  is a non-quadratic function and   is a given random variable with zero mean and 

unit variance. The following choices for (.)G  are usually adopted in the literature:  

 

 
2

1 1 2

1

1
( ) = logcosh , ( ) = exp( / 2)G u a u G u u

a
                               (18) 

 

where 11 2a   is a constant and in this paper, we have used the function 2G . 

We now explain the methodology of the fast-ICA algorithm to estimate the i -th row in 

matrix W , i.e., the vector iw  which is denoted as one of the independent components. We 

first assign a random value to vector iw  and then update the value with a learning rule. In fact 

fast-ICA is a fixed-point iterative algorithm that finds the maxima of non-Gaussianity of iw Y  

as measured in (17). The derivation of the function 2 ( )G u  that we have adopted is obtained 

as:  
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2( ) = exp( / 2).g u u u                                                           (19) 

 

The methodology for source separation used in the fast-ICA algorithm is as follows:  

 

    1.  For =1i to 2  

    2.  Choose an initial weight vector iw   

    3.  Let = [ ( )] [ ( )]T T

i i i iE g E gw Y w Y w Y w    

    4.  Let = /T T T

i i iw w wP P  

    5.  If not converged, go to 3.  

    6.  End for  

 

In this paper, we mainly focus to maximize the Kurtosis metric for separating the mixed 

signals. In this method, Kurtosis metric helps us measure the non-Gaussian property of the 

separated signals. 

After preprocessing (centering and whitening), the observed vector signal, Y  is filtered by 

2 q  matrix equalizer W  that produces the 2 1  vector output 1 2= [ , ]T
Z z z . This 

operation can mathematically represents as: 

 

 = = ' = ' Z WY WHA n GA n                                     (20) 

 

where =G WH  is the 2 2  global response matrix, and ' =n WN  is the colored noise at 

the receiver output. The receiver (BSS block) outputs , =1,2j jz  should ideally match the 

transmitted signals , =1,2j ja  [21] [17]. 

We define: 

 

 = Kurtosis[ ] = [ ]a j j
j

K Ka a                                            (21)  

 

 
2 2= [| | ], =1,2a jE j a                                                       (22) 

 

where:  
 

 
4 2 2 2 2[ ] = [| |] 2 [| | ] | ( ) |K x E x E x E x                                       (23) 

 

It can be proved [17] that: 

 

 
2

2 2 2

=1

[| | ] = | | , =1,2j a jl

l

E g j z                                   (24) 

 
2

4

=1

( ) = | | , =1,2j a jl
l

l

K K g jz                                               (25) 

 

where, jlg  is the element in the j -th row and l -th column of matrix G . 
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In can be proofed [17] that the following set of conditions is necessary and sufficient for 

blind recovery of the transmitted signals. 
 

2 2

*

1:| ( ( )) | | |, 1,2

2 : | ( ) | , 1,2

3: ( ( ) ( )) 0,

j

j

j a

j a

l j

C K z k K j

C E z k j

C E z k z k l j



 

 

 

     (26) 

 

The above conditions for BSS problem leads to solving the following optimization problem 

[17]:  

 

 =

2

2

1

subject to

( ) = | ( ) |max

:

j

j

H

F K



 


G

G I

G z

G

                                                   (27) 

 

It can be proved that the maximum of each absolute value in above optimization is equal to 

recovering each independent source [21]. In fact the MUK algorithm separates signals in a 

way that the separated signals have the maximum possible value of Kurtosis metric, where the 

separated signals have unit variance. Kurtosis metric for Gaussian random variable is equal to 

zero and for non-Gaussian random variable is non-zero. In other words, the random variable 

with more unpredictable property has lower Kurtosis value. This feature is exploited in the 

next Section for identifying different sources, as explained below. 

3.2 Spectrum Sensing Based on BSS Algorithm 

As explained previously, in the MUK algorithm, the following metric is maximized:  

 

 
2

1 2

=1

( ) = | ( ) |=| ( ) | | ( ) | .j

j

F K K KG z z z                                    (28) 

 

 

Actually, our spectrum method is based on solving the optimization problem (27). More 

precisely, solving (27) lets us to recover original signals which is equivalent to performing 

spectrum sensing, and this process requires the values 
1

aK and 
2

aK  to be non-zero. This is 

achieved when the distribution of unknown original signals is non-Gaussian. This requirement  

is likely to be available in our scenario due to the limited size of vector , 1,2j j z  and thus 

the optimization problem (27) has a solution. Based on the solution obtained for 1| ( ) |K z  and 

2| ( ) |K z  as a result of the optimization problem (27), we can distinguish how many signal 

components are present in the considered network and then we can identify the absence or 

presence of  the primary signal, as explained below in more details.  

Since (28) is the sum of two absolute values, maximizing it is equivalent to the 

maximization of each absolute value, individually. We have assumed two independent signals 

in the channel, therefore the maximum value for these two absolute values in ideal situations 

will be equal to 
1

aK  and 
2

aK . As shown in Fig. 3, if we have only one independent signal in 

the channel, only one of these absolute values will take the maximum value (in ideal situations 
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equal to aK ) and the other one will not have a meaningful maximum. However, when two 

independent signals are present in the channel, there is a meaningful maximum at the diagrams 

of 1| ( ) |K z  and 2| ( ) |K z . The number of meaningful maximums in diagrams of the absolute 

values of 
1| ( ) |K z  and 2| ( ) |K z  is the same as the number of independent signals in the 

channel (see Fig. 3). 

 

 
Fig. 3. Kurtosis versus the ( , )i j -th element of matrix w . a: There is no source signal in the channel 

and we observe that the Kurtosis does not have a meaningful maximum value. b: There is an 

independent source signal in the channel and we observe that the Kurtosis curve has a meaningful 

maximum. 
   

In MUK method, for separating independent signals, it is desired to find the maximum of 

1| ( ) |K z  and 2| ( ) |K z  for all 11 1, , qw w  and 12 2, , qw w  , respectively. Now if there is no 

signal present in the channel, in ideal situations, the maximum of the absolute value of both 

1| ( ) |K z  and 2| ( ) |K z  are equal to zero. However, as stated above, in real scenarios, these 

absolute values are not exactly equal to zero and have some fluctuations as shown in Fig. 3a 

and the maximum in this case is not meaningful. When there is one signal present in the 

channel, only the corresponding | ( ) | ( =1,2)iK iz  would have a meaningful maximum value. 

Now, if there are two independent signals present in the channel, then both absolute values of 

1| ( ) |K z  and 2| ( ) |K z  would take a meaningful maximum, which in ideal situations is equal 

to 
1

aK  and 
2

aK . By comparing the maximum of the curves with a threshold, it can be decided 

that the maximum is meaningful or not. Finally the second subblock shown in Fig. 2, measures 

the Kurtosis of separated signals (that is the maximum of the aforementioned absolute values) 

and make a decision about the presence or absence of the PU. The following steps summarize 

our adopted spectrum sensing methodology that is adopted at the CR terminal: by using the 

following rules: 

1. When one of the SUs is in operation and transmitting its signal, 

 If the channel sensing part (the source identifier subblock) indicates that two 

independent signals are present in the channel, then we can conclude that the 

PU is in operation. 

 If the channel sensing part (the source identifier subblock) indicates that one 

independent signal is present in the channel, then we can conclude that the PU 

is NOT in operation. 

2. When the SU is NOT in operation,   

 If the channel sensing part (the source identifier subblock) indicates one 

independent signal in channel, then we can conclude that the PU is in 

operation. 

 If the channel sensing part (the source identifier subblock) indicates that there 

are no independent signals present in the channel, then we can conclude that 
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the PU is NOT in operation. 

 

 
Fig. 4. PU data frame length and the sensing frame length  

  

As shown in Fig. 4, the spectrum sensing frame length is smaller than the PU data frame 

length. More precisely, here we assume that the PU data frame length is equal to M L  

where L  is the sensing frame length. The activity of the CR transmitter in a current sensing 

frame is based on the decision that is made in the previous sensing frame. If the spectrum 

sensing stated the absence of PU in the current sensing frame, then the CR transmitter would 

be active in the next sensing frame and if the spectrum sensing finds the PU active, then the CR 

transmitter would be inactive in the next sensing frame. Thus, our considered BSS-based 

spectrum sensing is a dynamic system. To study the performance of such a dynamic system, 

we usually define probabilities mP  and fP  as the probability of miss detection and the 

probability of false alarm when the CR transmitter is not in operation during the spectrum 

sensing. Similarly, we define probabilities mP  and fP  as probability of miss detection and 

probability of false alarm when the CR transmitter is in operation during the spectrum sensing 

process. Depending on the actual presence or absence of the PU (characterized by hypotheses 

0

PNH  and 1

PNH defined previously), and the estimate about this presence or absence made by 

the CR device (characterized by hypotheses 0

CNH  and 1

CNH defined previously), we can 

model the dynamic BSS spectrum sensing by a 4-state Markov model with the following states  

[22] [14]:  

 State 1 1( )S : corresponds to the simultaneous occurrence of hypothesis 1

CNH  and 

0

PUH  (which characterizes a false alarm event), 

 State 2 2( )S : corresponds to the simultaneous occurrence of hypothesis 0

CNH  , 0

PUH  

(i.e., the spectrum sensing decision is correct), 

 State 3 3( )S : corresponds to the simultaneous occurrence of hypothesis 0

CNH  and 

1

PUH  (which characterizes the miss detection event), 

 State 4 4( )S : corresponds to the simultaneous occurrence of hypothesis 1

CNH  and 

1

PUH  (i.e., the spectrum sensing decision is correct). 

Markov modeling is usually characterized by a transition probability matrix that in our 

scenario is a 4 4  matrix denoted P . The ( , )i j  element of the transition matrix P  is 

denoted ijp  and defined as:  

 

 = { ( ) | ( 1)}ij j ip P n nS S                                               (29) 

 

where n  represents the n -th time index for the sensing frame. Each element ijp  can be 

calculated easily. For instance, the element 11p  is obtained as:  
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11 1 0 1 0= { ( ), ( ) | ( 1), ( 1)}CN PU CN PUp P n n n n H H H H .                    (30) 

 

 Equation (30) can be written as:  
 

                           
11 1 0 1 0= { ( ) | ( ), ( 1), ( 1)}CN PN CN PNp P n n n n H H H H                 

 0 1 0{ ( ) | ( 1), ( 1)}PN CN PNP n n n  H H H                                                  (31) 

 

Here, we assume that in a given frame, the CR network, has no knowledge about the 

presence/absence of the PU in the previous sensing frame. So, we have:  

 

 0 1 0{ ( ) | ( 1), ( 1)} =PN CN PNP n n n H H H  

 0 0 00{ ( ) | ( 1)} =PN PNP n n qH H                                                                 (32) 

 

where ijq  is the transition probability of PU from state i  to state j  where, , {0,1}i j . As 

stated above, the decision made by spectrum sensing in the n -th sensing frame depends only 

on the decision made in the ( 1)n -th sensing frame and not on the real state of the PU in 

( 1)n -th sensing frame. So, we can rewrite (32) as:  

 

 11 00 1 0 1= { ( ) | ( ), ( 1)}.CN PN CNp q P n n n H H H                                        (33) 

 

 As we will see in simulation results, the performance of spectrum sensing with active CR 

transmitter ( ,m fP P ) is a little lower than the performance of spectrum sensing with inactive 

CR transmitter ( ,m fP P ). In fact, the CR transmitter affects the performance of spectrum 

sensing to some extent. More precisely, if the spectrum sensing indicates the presence of the 

PU, the CR transmitter would be inactive and the decision in the n -th sensing frame would be 

taken with an active CR transmitter. So Equation (33) can be written as:  

 

 11 00 1 0 00= { ( ) | ( )} =CN PN

fp q P n n q P H H                                      (34) 

 

Likewise for 22p  we would have:  
 

 22 00= (1 )fp q P  .                                                        (35) 

 

 All elements of matrix P  can be calculated, in a similar way. To compute the probability 

of miss detection and probability of false alarm, for dynamic spectrum sensing we should find 

the probability of state 3S  and 1S  in the mentioned Markov model. To calculate these 

probabilities, we should find the stationary distribution of the Markov model [22]. We denote 

by 1 4( ) = [ ( ), , ( )]Tn n n    the vector of state probabilities at the n -th sensing frame, 

where ( )i n  for {1,2,3,4}i  is the probability of being in the i -th state at the n -th 

sensing frame, i.e., ( ) = { ( )}i in P n S . In the Markov model we have [22]:  

 

 ( ) = (0)nn P .                                                              (36) 
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To compute the stationary distribution of Markov model we have [22]:  

 

 = ( ) = (0)lim lim
n

n n

n  
 

P                                                       (37) 

 

where 
1 4= [ , , ]T    is the stationary distribution vector and 

i  for {1,2,3,4}i  is the 

stationary probability of being in the i -th state and (0)  is the probability distribution at the 

beginning of spectrum sensing ( 0)n  . The limit in (37) is solved by solving the following 

two equations:  

 

 = , P                                                                          (38) 

  

 1 2 3 4 =1.                                                                      (39) 

 

 Finally, the probability of miss detection and probability of false alarm corresponding to 

the dynamic BSS-based spectrum sensing scenario is:  
 

 
dynamic 0 1 3

1 1

{ , }
= = ,

{ } { }

CN PU

m

P
P

P P

H H

H H
                                                   (40) 

  

 
dynamic 1 0 1

0 0

{ , }
= = .

{ } { }

CN PU

f

P
P

P P

H H

H H
                                                   (41) 

 

It should be noted that the calculated dynamic performance measures is the distinctive 

feature of the proposed spectrum sensing method. Moreover, the performance of the proposed 

spectrum sensing method also depends on the behavior of the PU activity. In fact, if the real 

state of the PU ( 0

PNH  or 1

PNH ) in the current sensing frame is repeated with a high probability 

in the next sensing frame, then the performance of the BSS sensing will increase noticeably. 

4. Simulation results 

In this section we analyze the performance of the proposed BSS-based channel sensing 

algorithm through numerical analysis. We compare the results in terms of receiver operating 

characteristic (ROC) curves for different BSS methods, SNR values and also for different 

number SUs as channel sensors. We provide simulation results in both cases when the SU 

transmitter is off and on. Then, for different errors of synchronization between primary and 

secondary frames, we compare the proposed method performance with a conventional ED 

method. In all simulations the sensing frame length L  is equal to 100 . 

In Fig. 5, we have depicted the ROC diagram obtained by using different BSS-based 

spectrum sensing techniques for the case where the SNR is equal to 5 dB and the number of 

SUs is equal to 10. It is also assumed that the SUs are not in operation during spectrum sensing. 

We observe that in this scenario, the source separator based on comfac and Kurtosis 

outperform other competitive methods. Similar plots are depicted in Fig. 6 for the case where 

the SU is in operation during spectrum sensing. Note that this feature is the main advantage of 
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BSS-based spectrum sensing compared to conventional methods since it allows simultaneous 

transmission and sensing for the SU. For comparison, we have also provided the sensing result 

obtained with a classical ED method, in the situation where the CR transmitter is ON.  In this 

scenario, we observe that the Kurtosis signal separator outperforms ED and BSS-based all 

competitive methods significantly. 

 

 
Fig. 5. The miss-detection probability versus the false-alarm probability for the comparison between 

different BSS-based spectrum sensing; the sensing SNR=5 dB, SUs number=10, CR Transmitter is OFF 

during spectrum sensing.  

 
Fig. 6. The miss-detection probability versus the false-alarm probability for the comparison between 

different BSS-based spectrum sensing; the sensing SNR=5 dB, SUs number=10, CR Transmitter is ON 

during spectrum sensing. 
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In order to analyze the impact of sensing SNR on the performance of the proposed channel 

sensing method, we have shown in Fig. 7, different ROC diagrams for a sensing SNR value of 

10 dB when the cognitive transmitter is active during spectrum sensing and when the number 

of SUs is equal to 10. Again, we can see that the proposed Kurtosis based method outperforms 

other BSS-based methods. 

 

 
Fig. 7. The miss-detection probability versus the false-alarm probability for the comparison between 

different BSS-based spectrum sensing; the sensing SNR=10 dB, SUs number=10, CR Transmitter is 

ON during spectrum sensing. 

   

As observed in previous simulation results, the main advantage of our proposed BSS-based 

spectrum sensing is when the SU is allowed to communicate with its base station during 

spectrum sensing. Obviously, this features leads to an increase of the overall throughput that 

can be characterized by smaller false alarm probability. Figure 8, compares the false alarm 

probability versus the number of SUs for different BSS-based spectrum sensing methods. We 

observe that the Kurtosis method provides the lowest false alarm probability (i.e., the highest 

throughput) compared to other competitive methods. Moreover, we observe that the false 

alarm probability decreases when the number of SUs increases. This observation is due to the 

fact that the accuracy of spectrum sensing is increased when a larger number of SU are 

involved in the spectrum sensing process. 

In Fig. 8, we have plotted the probability of false alarm (for a fix probability of miss 

detection) versus the number of secondary users for different BSS-based spectrum sensing 

methods. This result lets us to compare the adequacy of each method in terms of secondary 

throughput, because lower false alarm means a larger throughput for the secondary network. 

We observe that the Kurtosis based method provides the lower probability of false alarm 

(equivalently, the larger secondary throughput) for a given number of SUs. 
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Fig. 8. Probability of false alarm versus the number of SUs at fixed probability of miss detection for 

different BSS-based spectrum sensing methods, the CR is assumed to be OFF during spectrum sensing. 
   

In Fig. 9, we have set the probability of miss detection to 0.01 and analyze the probability of 

false alarm for different values of error in synchronization. For instance, a synchronization 

error of 50% means that the secondary has assumed that the middle of the primary frame is the 

beginning of the frame. We observe that the family of BSS-based spectrum sensing are not 

senstitive to frame synchronization errors while the conventional ED spectrum sensing is very 

senstive. For more SUs, the performance of both BSS-based spectrum sensing and the ED 

spectrum sensing would increase. However, the proposed BSS-based spectrum sensing is not 

sensitive to synchronization errors and therefore, yielding a better performance for errors in 

synchronizations.  
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Fig. 9. False alarm probability versus error in synchronization. Comparison between conventional 

cooperative ED with 2 SUs and different BSS based methods. 

   

In order to analyze the performance of the BSS-based spectrum sensing in the dynamic 

mode, we have shown in Fig. 10, different ROC diagrams for the proposed BSS-based method 

(Kurtosis based). The sensing SNR value is equal to 5 dB and the cognitive transmitter 

switches dynamically to ON/OFF states. The ROC diagrams are plotted for different ratios of 

sensing frame to the PU frame which is equal to =1/ M . It can be seen that the performance 

of the dynamic spectrum sensing is better for smaller values of parameter .  Note that in this 

diagram, the sensing frame length is fixed and equal to 100L  , and the PU data frame length 

is assumed variable.  
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Fig. 10. The miss-detection probability versus the false-alarm probability for the comparison between 

different ratio of sensing frame to PU data frame.   is the ratio of sensing frame to PU data frame. 

5. Conclusion 

In this paper, we proposed a BSS-based algorithm for spectrum sensing in CR systems. The 

proposed method uses BSS to recover two assumed original signals and then the properties of 

the recovered signals are determined in order to recognize and separate each initial source. 

Then, the decision about the presence or absence of the PU signal is made accordingly. We 

showed that the advantage of the proposed method is that the secondary sensing frame does 

not need to be synchronized with the primary data frame. The other main advantage of our 

method is that the secondary user can continue its transmission during spectrum sensing. In 

other words, the proposed method increases the secondary throughput compared to 

conventional methods such as ED that force the secondary to be inactive during spectrum 

sensing. We compared different type of BSS techniques and showed that BSS based on 

Kurtosis maximization outperforms other methods. It was also seen that performance 

improvement is more important when a larger number of SU is involved for spectrum sensing. 
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