• Title/Summary/Keyword: symmetric product

Search Result 95, Processing Time 0.022 seconds

Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section (좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Finite Element Analysis and Material Mechanics of Paper Angle (종이 앵글 포장재의 재료역학적 특성과 유한요소해석)

  • Park J. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.347-353
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector, But, in the future, paper angle will be applied to package design of heavy product such as strength reinforcement or unit load system (ULS). Therefore. understanding of buckling behavior fur angle itself, compression strength and quality standard are required. The objectives of this study were to characterize the buckling behavior by theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, as applied load level was bigger and/or the length of angle was longer, incresing rate of buckling of asymmetric paper angle was higher than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia significantly increased as the extent of asymmetric angle increased, and buckling orientation of angle was open- direction near the small web. Incresing rate of maximum compression strength (MCS) for thickness of angle decreased as the web size increased in symmetric angle. MCS of asymmetric angle of 43${\times}$57 and 33${\times}$67 decreased $15{\~}18\%$ and $65{\~}78\%$, and change of buckling increased $12{\~}13\%$ and $62{\~}66\%$, respectively.

Mechanical Behavior Analysis and Strength Standardization of Paper Angle (종이 앵글의 역학적 거동 분석과 강도 표준화 연구)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector. But, we have perceived its application to package design of heavy product such as strength reinforcement or unit load system (ULS) in the future. Above all, understanding of buckling behavior for angle itself and compression strength and quality standard have to be accomplished for the paper angle to be used for this purpose. The purpose of this study was to elucidate the buckling behavior through theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, increasing rate of buckling of asymmetric paper angle was higher as applied load level was bigger and/or the length of angle was longer than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia was remarkably increased as the extent of asymmetric angle is bigger, and buckling orientation of angle was open direction near the small web. Increasing rate of maximum compression strength (MCS) for thickness of angle was smaller as the web size was bigger in symmetric angle. MCS of asymmetric angle of $43{\times}57$ and $33{\times}67$ was decreased $15{\sim}18%$ and $65{\sim}78%$, and change of buckling was increased $12{\sim}13%$ and $62{\sim}66%$, respectively.

  • PDF

An Experimental Study on Forming an Axi-Symmetric Dome Type Closed-Die Forging Product Using Modeling Material(I) (모델링재료를 이용한 축대칭형 돔형상의 폐쇄단조 성형 연구 (I))

  • 이근안;임용택;이종수;홍성석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2082-2089
    • /
    • 1992
  • An experimental study on forging an axi-symmetric dome type of AISI4130 was carried out using modeling material. In order to verify the validity of the experimental data, a similarity study between plasticine and AISI4130 has been made. Friction conditions were characterized by ring test for the various lubricants. For the closed-die forging experiments of an axi-symmetric dome type of AISI4130 using the plasticine, various cylindrical billets with different aspect ratios were forged and different flash width to thickness(W/T) ratios were used in order to determine the optimum forging conditions. As W/T ratios decrease forging loads decrease while excess volumes increase. It was found out that the experimental results reproduce the similiar results available in the literature. As a result of these experiments, it was construed physical modeling is an excellent tool for forging process simulation at a practical level.

Area-Efficient Squarer and Fixed-Width Squarer Design (저면적 제곱기 및 고정길이 제곱기의 설계)

  • Cho, Kyung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • The partial product matrix (PPM) of a parallel squarer is symmetric. To reduce the depth of PPM, it can be folded, shifted and rearranged. In this paper, we present an area-efficient squarer design method using new partial product rearrangement. Also, a fixed-width squarer design method of the proposed squarer is presented. By simulations, it is shown that the proposed squarers lead to up to 17% reduction in area, 10% reduction in propagation delay and 10% reduction in power consumption compared with previous squarers. By using the proposed fixed-width squarers, the area, propagation delay and power consumption can be further reduced up to 30%, 16% and 28%, respectively.

Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal (극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향)

  • Lee, J.H.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

Design of combined unsigned and signed parallel squarer (Unsigned와 signed 겸용 병렬 제곱기의 설계)

  • Cho, Kyung-Ju
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • The partial product matrix of a parallel squarer are symmetric about the diagonal. To reduce the number of partial product bits and the depth of partial product matrix, it can be typically folded, shifted and bit-rearranged. In this paper, an efficient design approach for the combined squarer, capable of operating on either unsigned or signed numbers based on a mode selection signal, is presented. By simulations, it is shown that the proposed combined squarers lead to up to 18% reduction in area, 11% reduction in propagation delay and 9% reduction in power consumption compared with the previous combined squarers.

The Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions

  • Deniz, Erhan;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • In this present work, the authors obtain Fekete-Szeg$\ddot{o}$ inequality for certain normalized analytic function f(z) defined on the open unit disk for which $\frac{(1-{\alpha})z(D^m_{{\lambda},{\mu}}f(z))'+{\alpha}z(D^{m+1}_{{\lambda},{\mu}}f(z))'}{(1-{\alpha})D^m_{{\lambda},{\mu}}f(z)+{\alpha}D^{m+1}_{{\lambda},{\mu}}f(z)}$ ${\alpha}{\geq}0$) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (or convolution) are given. As a special case of this result, Fekete-Szeg$\ddot{o}$ inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to generalize the Fekete-Szeg$\ddot{o}$ inequalities obtained by Srivastava et al., Orhan et al. and Shanmugam et al., by making use of the generalized differential operator $D^m_{{\lambda},{\mu}}$.

Finite Element Analysis and Process Planning about the Auto Transmission Solenoid Valve using of Multi-Former (다단-포머를 이용한 오토트랜스 미션용 솔레노이드 밸브 공정설계 및 유한요소해석)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The process design of forward Extrusion and Upsetting of Axi-symmetric part has been studied in this paper. During the cold forging product; auto transmission Solenoid Valve part, the defects such as folding and under-fill can be appeared by the improperly controlled metal flow. In this study, to reduce the folding and under-fill the design of experiments has been used to find out the significant design variables in the design of forging process. This paper deals with an Process Planning with which designer can determine operation sequences even after only a little experience in Process Planning of Multi-Former products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge-base consisting of design rules is built. Based on the systematic procedure of process sequence design, the forming operation of cold forged auto transmission Solenoid Valve part is analyzed by the commercial Finite Element program, DEFORM/2D.

A THEORY OF RESTRICTED REGULARITY OF HYPERMAPS

  • Dazevedo Antonio Breda
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.991-1018
    • /
    • 2006
  • Hypermaps are cellular embeddings of hypergraphs in compact and connected surfaces, and are a generalisation of maps, that is, 2-cellular decompositions of closed surfaces. There is a well known correspondence between hypermaps and co-compact subgroups of the free product $\Delta=C_2*C_2*C_2$. In this correspondence, hypermaps correspond to conjugacy classes of subgroups of $\Delta$, and hypermap coverings to subgroup inclusions. Towards the end of [9] the authors studied regular hypermaps with extra symmetries, namely, G-symmetric regular hypermaps for any subgroup G of the outer automorphism Out$(\Delta)$ of the triangle group $\Delta$. This can be viewed as an extension of the theory of regularity. In this paper we move in the opposite direction and restrict regularity to normal subgroups $\Theta$ of $\Delta$ of finite index. This generalises the notion of regularity to some non-regular objects.