• Title/Summary/Keyword: symmetric methods

Search Result 414, Processing Time 0.023 seconds

On the Effect of Estimated Mean for the Weighted Symmetric Estimator

  • Key Il Shin;Hee Jeong Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.903-909
    • /
    • 1997
  • The ordinary least squares estimator and the corresponding pivotal statistics have been widely used for the unit test. Recently several test criteria based on maximum likelihood estimators and weighted symmetric estimator have been proposed for testing the unit root hypothesis in the autoregressive processes. Pantula at el. (1994) showed that the weighted symmetric estimator has good power properties. In this article we use an adjusted estimator for mean in the model when we use weighted symmetric estimator. A simulation study shows that for the small samples, this new test criterion has better power properties than the weighted symmetric estimator.

  • PDF

A Cointegration Test Based on Weighted Symmetric Estimator

  • Son Bu-Il;Shin Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.797-805
    • /
    • 2005
  • Multivariate unit root tests for the VAR(p) model have been commonly used in time series analysis. Several unit root tests were developed and recently Shin(2004) suggested a cointegration test based on weighted symmetric estimator. In this paper, we suggest a multivariate unit root test statistic based on the weighted symmetric estimator. Using a small simulation study, we compare the powers of the new test statistic with the statistics suggested in Shin(2004) and Fuller(1996).

ANALYSIS OF A SMOOTHING METHOD FOR SYMMETRIC CONIC LINEAR PROGRAMMING

  • Liu Yong-Jin;Zhang Li-Wei;Wang Yin-He
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.133-148
    • /
    • 2006
  • This paper proposes a smoothing method for symmetric conic linear programming (SCLP). We first characterize the central path conditions for SCLP problems with the help of Chen-Harker-Kanzow-Smale smoothing function. A smoothing-type algorithm is constructed based on this characterization and the global convergence and locally quadratic convergence for the proposed algorithm are demonstrated.

ON THE CONSTRUCTION OF SELF-DUAL CODES OVER GF(2m) USING SYMMETRIC GENERATOR MATRICES

  • HAN, SUNGHYU
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.703-715
    • /
    • 2021
  • There are several methods for constructing self-dual codes. Among them, the building-up construction is a powerful method. Recently, Kim and Choi proposed special building-up constructions which use symmetric generator matrices for self-dual codes over GF(q), where q is odd. In this paper, we study the same method when q is even.

ROTATIONALLY SYMMETRIC SOLUTIONS OF THE PRESCRIBED HIGHER MEAN CURVATURE SPACELIKE EQUATIONS IN MINKOWSKI SPACETIME

  • Man Xu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.29-44
    • /
    • 2024
  • In this paper we consider the existence of rotationally symmetric entire solutions for the prescribed higher mean curvature spacelike equations in Minkowski spacetime. As a first step, we study the associated 0-Dirichlet problems on a ball, and then we prove that all possible solutions can be extended to + ∞. The proof of our main results are based upon the topological degree methods and the standard prolongability theorem of ordinary differential equations.

Nonparametric Estimation in Regression Model

  • Han, Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2001
  • One proposal is made for constructing nonparametric estimator of slope parameters in a regression model under symmetric error distributions. This estimator is based on the use of idea of Johns for estimating the center of the symmetric distribution together with the idea of regression quantiles and regression trimmed mean. This nonparametric estimator and some other L-estimators are studied by Monte Carlo.

  • PDF

Performance Evaluation and Analysis of Symmetric Multiprocessor using Multi-Program Benchmarks (Multi-Program 벤치마크를 이용한 대칭구조 Multiprocessor의 성능평가와 분석)

  • Jeong Tai-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.645-651
    • /
    • 2006
  • This paper discusses computer system performance evaluation and analysis by employing a simulator which able to execute a symmetric multiprocessor in machine simulation environment. We also perform a multiprocessor system analysis using SPLASH-2, which is a suite of multi-program benchmarks for multiprocessors, to perform the behavior study of the symmetric multiprocessor OS kernel, IRIX5.3. To validate the scalability of symmetric multiprocessor system, we demonstrate structure and evaluation methods for symmetric multiprocessor as well as a functionality-based software simulator, SimOS. In this paper, we examine cache miss count and stall time on the symmetric multiprocessor between the local instruction and local data, using the multi-program benchmarks such as RADIX sorting algorithm and Cholesky factorization.

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

Moment-Based Density Approximation Algorithm for Symmetric Distributions

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.583-592
    • /
    • 2007
  • Given the moments of a symmetric random variable, its density and distribution functions can be accurately approximated by making use of the algorithm proposed in this paper. This algorithm is specially designed for approximating symmetric distributions and comprises of four phases. This approach is essentially based on the transformation of variable technique and moment-based density approximants expressed in terms of the product of an appropriate initial approximant and a polynomial adjustment. Probabilistic quantities such as percentage points and percentiles can also be accurately determined from approximation of the corresponding distribution functions. This algorithm is not only conceptually simple but also easy to implement. As illustrated by the first two numerical examples, the density functions so obtained are in good agreement with the exact values. Moreover, the proposed approximation algorithm can provide the more accurate quantities than direct approximation as shown in the last example.