Multi-Program ¥l x| v} Z.& o] 83}
Multiprocessor®] 4353 7} 2}

4 o 7

Performance Evaluation and Analysis of Symmetric Multiprocessor using Multi-Program
Benchmarks

Taikyeong Jeong*

Q o

B =2 745E A2 Azt B4 8 AT 2o HEHIZZAME AP T F AT Al EHOEHE AHE
ato] AR gron g Al2wl 2A4E st ol HHEZZAANE fF BEZ2 a3 WX ei= e YA
SPLASH-2E o| 5t t A 729 L YA A IRIX 53 &4 DE| T2 M A9 M) dFE 8317931
HE| 2 A M o] Aj2dl &A1& AAESt

w3 ATz HZZAAMY T2 FrPEyEE B fFESHASH] AsA HEZ2AAMY FHAE
functionality-based A~ZE 9]¢l SimOSE 7HA3 FH&Yon 2 =588 S3lo HEZTZ e wxnlal
RADIX A3 dmejFolut Cholesky Q15 # 3] d1elF& o] &dte] 22 JA~EHN I 22 dlolE Afoloxie
2 *‘i‘ﬂ/ﬂ/] Cache miss®] = ¢} Stall A)Z+& 5 A] °ﬂ Akt

\

ABSTRACT

This paper discusses computer system performance evaluation and analysis by employing a simulator which able to execute a symmetric
multiprocessor in machine simulation environment. We also perform a multiprocessor system analysis using SPLASH-2, which is a suite of
multi-program benchmarks for multiprocessors, to perform the behavior study of the symmetric multiprocessor OS kernel, IREX 5.3.

To validate the scalability of symmetric multiprocessor system, we demonstrate structure and evaluation methods for symmetric
multiprocessor as well as a functionality-based software simulator, SimOS. In this paper, we examine cache miss count and stall time on the
symmetric multiprocessor between the local instruction and local data, using the multi-program benchmarks such as RADIX sorting algorithm
and Cholesky factorization.

: slele
Multiprocessors, Performance Evaluation, Machine simulator, Multi-program benchmarks

I. INTRODUCTION disseminate information relative to performance aspects.
Many researchers now consider some benchmarks and

The major goal of performance evaluation is to collectand ~ workloads for performance measurements that can be used to

« Department of Electrical and Computer Engineering, MRt 2005, 11, 28
the University of Texas at Austin, Austin, TX 78712,

rot
Ml
o
o2
ox

BB =EA 4104 A4z

compare compute-intensive workloads on different type of
high-performance computer systems including uni-processors
and multiprocessors.

In this case, we will focus on the quantitative and
analytical characterization of processors and applications for
general-purpose and scientific computer system. Several
papers from recent performance evaluation, computer
architecture, and workload characterization-related
conferences have studied and verified these analysis methods
and algorithms [1]

The pervasive nature of performance evaluation for
computer architecture extends it to virtually all sciences. The
use of complex algorithms to compare different families of
computers is correct since computer efficiency depends not
only upon the concrete computer architecture but also upon
the operating system version which controls the user’s tasks.

Therefore, this paper will examine that symmetric
multiprocessor structure and evaluation methods for design
effectiveness using multi-program benchmarks. We also observe
a cache miss count and a stall time to validate a symmetric
multiprocessor performance with multi-program workloads.

. SIMULATION ENVIRONMENTS

In this section, first we derive our simulation environment
with a software simulator. Subsequently, we discuss way to
adapt it to more realistic organizations.

2.1 Experimental Platform

A workload for computer architecture evaluation is
important in the area of programming and system design to
estimate the efficiency of computer processor operation.
SimOS is a functionality-based software simulator for the
FLASH (Flexible Architecture for SHared memory) project
[2]. In this case, the FLASH muitiprocessor will be a scalable
multiprocessor able to support a variety of communication
models, including shared memory and message passing
protocols, through the use of a programmable node controller.
This processor structure has a symmetric structure since
memory is shared, and it provides the architectural support

646

necessary to use FLASH as a traditional “standalone”
supercomputer, a computer server, a robust multi-user
system, or a distributed system.

Therefore, SimOS has been widely used in real system
designs, such as the Stanford FLASH machine [6], Hive
operating system, and SUIF parallel compiler as well as research
projects such as Tornado project at University of Toronto [5] and
IRAM project at University of California at Berkeley.

SimOS contains the whole machine simulation
environment required for studying both hardware and
software of modem complex high-performance computer
systems. It usually provides the ability to simulate the whole
computer system instead of just a couple of functional units.
Various hardware models, ranging from CPUs to consoles
have been validated and enclosed in SimOS simulation
environments. Additionally, SimOS describes the hardware
system in such detail that a commercial OS can be booted
directly on it with little or no modification endeavor.

In the meantime, SimOS employs a couple of mechanisms
for trading off between simulation speed and accuracy [2].
This characteristic makes our simulation results of complex
multiprocessor systems become both more efficient and
practical. Moreover, SimOS contains a sophisticated but
flexible translation scheme which re-maps the huge amount,
but less informative, low-level hardware activities, i.e., cache
line fill bus transactions, translation look-aside buffer (TLB)
misses, cache-to-cache transfers, and inter-processor interrupts
back to understandable semantics such as remote misses.

———————,,L/—-A--:‘T--__ Wokioads
¢ Ay
/ i
~~~~~ }*—————————“v— Target OS
Do I
e ' SimOS |
- Compiles:Linker, S S i
VL ASsémbler, et ! j‘ Models
!L 1;
3 H
\_‘ ;{
CPU, Memory, Bus, Disk, etc. S

T |

Fig 1. An overview of SimOS simulation environment.
g 1. SimOS Algs|old &tzol JEE




Multi-Program % X| v} =L & o] &3} o} 2 72 Multiprocessor2] 43533 7+ 4

Figure 1 shows an overview of SimOS simulation
environment. Currently, SimOS can run on several platforms
- Host - including MIPS R400 with IRIX 5.3 (also included
IRIX 6.4), Alpha with digital UNIX platform, as well as X86
on Linux machine.

Furthermore, SimOS supports the booting of the OS and
execution of real workloads by providing detailed yet
comprehensive hardware models, e.g., CPU, memory, bus,
disk, ethernet, and console of completed computer systems.
We also observed that a pre-commercial version of symmetric
multiprocessor OS kernel IRIX 5.3 kernel has been modified
and ported to SimOS.

Many realistic and complex workloads, such as the GNU
C++ compiler, Sybase, and SPEC 95 benchmark suites can
run on the top of the target OS directly or with little
modification. Therefore, SimOS provides the potential ability
to investigate the performance of a wide range of real world
workloads on high-performance computer system architecture.

2.2 Multi-programmed Workload

We have more information about the characteristics of the
multi-programmed benchmarks, which we will discuss it in
detail. In order to provide access to this information so that
researchers do not need to perform costly simulations to get
the same information that we already have, we reported a set
of experimental results along with a validation methodology
and. an interactive drawing that allows symmetric
multiprocessor architecture to be viewed in a variety of ways.

A multi-programmed benchmark, Splash, was initially
released by Stanford University to perform multiprocessor
performance studies in 1992 [11]. The first version of the
Splash suite was written for the bus-based multiprocessors
with uniformly accessible shared memory, but it was not
implemented for optimal interaction with modern computer
system characteristics such a long cache lines, high latencies,
and physically distributed memory.

The Splash-2 [6] was explored and employed as the
workload to perform a case study of the multiprocessor OS
kernel. We have examined Splash-2 as a multi-programmed
benchmark suite for performance evaluation and analysis,

Therefore, we observed a simulation time, although

cycle-by-cycle functional simulation does provide detailed
and accurate results, is quite unexpected. It is almost
impossible to use only one simulation mode to support the
whole simulation, ie., booting the operating system,
mounting workload disk, performing the cache warm up, past
initialization, while collecting statistics.

The other problem that we might have is tool common
language (TCL) scripts can be used to control and monitor the
whole picture of hardware activities, (e.g., cache miss,
pipeline stalls and exception) that occur during the simulation
execution, they also contribute to the simulation delay. As a
result, only source those TCL scripts that are really required
for the performance study.

. METHODOLOGY

In this section, we present a performance evaluation
methods and analysis of symmetric multiprocessor using
multi-programmed benchmarks and some algorithms such as
the RADIX sort algorithm and Cholesky factorization.

3.1 RADIX Sort Algorithm

A sorting algorithm is an algorithm that puts elements of a
list in a certain order. Efficient sorting is important to
optimizing the use of other algorithms, such as search and
merge algorithms, which require sorted lists to work
correctly; it is also often useful for canonical order data and
for producing readable output. Therefore, the RADIX sorting
algorithm is used in many dataset systems and aerospace
applications. This radix program {4] requires bulk data to be
moved among processors. At the beginning, take the least
significant digit (or group of bits, both being examples of
radices) of each key, and the algorithm can sort the list of
elements based on that digit, but keep the order of elements
with the same digit (this is the definition of a stable sort).
Finally, repeat the sort with each more significant digit.

647



S FRARFA S =4 A 108 A4z

Process‘or i

Phase 1:

Scan its key and
generate
local histograms

[
: “ ﬂﬂ“ H 5 Phase 2
£ Q o E ase2:
5 _
§ § Combine into
° © . Global histogram
Radix values & Radix values
l::: “J_MHL
3 Sy Phase 3 :
o
Radix values Permute keys

for next iteration
Processor i+2

Processor / Processor i+1

Fig 2. The RADIX sort algorithm
28 2 RADIX HEgnzlE

The integer RADIX sort algorithm, which is shown in
Figure 2, is based on the method described by Belloch [9].
The whole RADIX algorithm is composed of several
iterations. Each iteration can further be divided into phases.
During the first phase, each processor generates its own
histogram of the key. And then, the local histograms are
combined into global histogram which represents the
distribution of RADIX digits of all the keys. After that, each
processor (from processor o to processor n-1) uses the global
histogram to permutate their partition of keys. The keys are
written into the destination array through processor writes.

An important factor that may affect the performance of
RADIX is the choice of radix r for sorting. The algorithm
performs iteration for each radix r digit in the keys.
Consequently, less iteration is required when a large radix
value is used. However, more storage is required for the local
and global histogram and performance will also be reduced
when radix r increases. The choice of radix r, the number of
processors, the number of keys to be sorted, and the number of
keys that fit in the cache can all affect the sorting performance.

3.2 Cholesky Factorization

Another multi-programmed workload is the Cholesky
factorization algorithm and it performs the factorization of a
sparse positive definite matrix.

6438

In paralle] architecture and distributed computing,
Cholesky factorization is often the most complicated step in
numerically solving a positive definite linear system of
equations. For a system with r equations and n unknowns, the
computational complexity is O(n’) floating point operations.
In many large-scale optimization algorithms, such as
sequential quadratic programming, the system of equations is
augmented with additional data and the Cholesky factorization
must be re-evaluated. To validate the multi-programmed
workload, we describe an algorithm for showing the
Cholesky factorization of an n x n positive definite matrix
when it has been augmented with m additional rows and
columns. In this case, the computational complexity is O( m’)
+0(m™) +O(mn’).

We investigated a use of this complicated algorithm for a
performance evaluation of symmetric multiprocessor. When
given a positive definite matrix A, this algorithm finds a lower
triangular matrix L, such that A= LL". This algorithm is
frequently used in structural analysis, device and process
simulation, and electric power network problems. The
Choslesky factorization algorithm can be divided into a
preprocessing phase and a factorization phase.

Figure 3 shows the pseudo-code of sequential algorithm
for the Cholesky algorithm. In the preprocessing phase, the
matrix is decomposed into blocks that have non-zero
elements and blocks that have all-zero elements. Blocks are
created by reordering matrix columns so that columns with
similar non-zero structures can be put together adjacent to

each other.

for k=1 to n do
Lxk = factor (Lkk)
for i = k+1 to n with Li % O do
Lik = Lac Ll
for j = k+1 to n with Lac 7~ O do
for i =j to n with Lac 7 0 do
La=La - Lix LT i

IO DE BN

Fig 3. Pseudo-code of seguential algorithm
O8 3 At gue|Fef |fAZE 79
In a Cholesky program, it is important to allocate blocks of
similar computation to each processor. Otherwise, the
computational load will be unbalanced and some processors
will have too much idle time.



Multi-Program Wl 2| v}z 5 ©]-§-7F o 3 7 2 Multiprocessor 2] 4 5% 71+ #4]
gram p!

After one processor finishes updating its block, the block
becomes ready to be passed to other processors so that other
blocks that depend on it can be updated also. The size of the
matrix will affect the performance of the Cholesky factorization.
If the matrix size is not big enough, many processors will be idle
and the performance will be lower than expected.

Iv. SYSTEM AND MEMORY
PERFORMANCE ON OS KERNEL

We have discussed that system performance evaluation
data based on multi-programmed benchmarks, e.g., RADIX
sorting and Cholesky algorithms which make system
reliability better since it has been evaluated already. It is an
attempt to minimize cache miss count and stall time to local
instruction to measure system performance.

Using multi-programmed workload, we have observed
cache miss count and stall time on symmetric multiprocessor
between the local instruction and local data. Figure 4 shows
the execution breakdown based on non-idle time.

As depicted in Figure 4, a large fraction of non-idle time is
occupied by memory system stall, 18 % of non-idle time is
spent on OS memory system stall, compared to just 4 % spent
on OS synchronization. In other words, 43 % of OS kernel
time is spent stalled for cache misses. This fact indicates that a
potential way to improve symmetric multiprocessor OS
kernel (with IRIX 5.3 kernel), is to reduce memory system
stall time. This result was tested and verified on symmetric
multiprocessor, using CC-NUMA machine as our performance

Wy
F1/ A0 SO gt
o : : ‘
N e |
£ : ‘ : :
PR
L : :
o + - * —

USER SYNCRONIZATION ~ OSELECUTION  OS MEMORY STALL

Fig 4. Non-idle execution breakdown on symmetric
multiprocessor OS kernel
a2 4 A FZE Muliprocessorel Bl EX|7|
Al xrFN

evaluation tool [7].

In this case, only 4 % of non-idle time is spent on
symmetric multiprocessor OS kernel synchronization (i.c.,
waiting for spin locks). Synchronization is obviously not a
performance bottleneck for RADIX sort algorithm because of
the following reasons. First of all, SGI have already tuned the
symmetric multiprocessor IRIX 53 OS kernel to run
efficiently on machines with as many as 36 processors by
providing a fine-grain synchronization kemel. The overhead
of IRIX 5.3 kernel synchronization is relatively low even for a
large multiprocessor system. Second of all, our multi-programmed
benchmarks, RADIX sort algorithm uses limited I/O services
for its algorithm.

V. EXPERIMENTAL RESULTS

In this paper, we have explored two benchmarks, RADIX
sort and Cholesky factorization from Splash-2 and use
RADIX sort algorithm to perform this experimental result.

Most CPU’s have first-level instruction and data
caches on chip and many have second-level cache(s)
that are bigger but somewhat slower. Memory
accesses are much faster if the data is already loaded
into the first-level cache. When some program
accesses data that isn’t in one of the caches, it gets a
cache miss [8].

As discussed above, the OS spends approximately half of it
time for cache misses. In a symmetric multiprocessor case,
CC-NUMA multiprocessor machine, a cache miss can either
lead to a local or remote memory access. Table 1 shows the
contribution of these two types’ memory accesses from the

Table 1. Memory performance of OS Kernel based on
different memory access modes

E 1. dl22] o{M2AgElol| 208 Kemde| o222 Asv|n

% of Cache Miss % of Cache Stall

Type of Reference

Count Time
Remote Instruction 0.11 0.13
Remote Data 0.65 0.81
Local Instruction 0.15 0.04
Local Data 0.09 0.02

649



A FHEEA G = A 4108 AL

perspective of both percentage of cache miss count and
percentage of cache stall time.

Table 1 also indicates both cache miss count and stall time
to the local instruction and local data are relatively low. This
occurs because we configured a large (1Mbyte) L2 level
cache for the simulated machine. The fact shows that the false
sharing of RADIX sort algorithm is reasonable as we
expected. Therefore, we derive that RADIX sort algorithm
can be scaled to larger multiprocessor system with CPU
numbers in excess of 36 processors.

Our simulation results demonstrate remote memory
accesses to both data and instructions dominate the cache
misses of the OS, accounting for 76 % by count and 94 % by
time. In this case, the symmetric multiprocessor IRIC 5.3 OS
kernel is not related to CC-NUMAmachine largely or almost
entirely in memory allocation and processor scheduling.
Since the multiprocessor OS code and much of the OS data
resides on cluster 0, this memory layout will lead to 7 out of 8
cache misses being remote misses. The symmetric
multiprocessor OS with IRTX 5.3 cannot detect and maintain
the affinity between processors and the local shared memory
distribute within the same cluster. Since events and system
calls that access various multiprocessor OS kemel data may
occur frequently on any CPU, the performance of this
symmetric multiprocessor OS IRIX 5.3 kernel may be even
worse than the performance of it on a small scale symmetric
multiprocessor [10].

Furthermore, remote data cache misses incur more latency
than remote instruction cache misses because it can be
writeable with shared variables. SimOS is a complete
machine simulation environment designed for the efficient
and accurate study of both uni-processor and multiprocessor
computer systems. Symmetric multiprocessor with computer
software programmed simulator in enough detail to boot and
run specialized multiprocessor operating systems using
multi-programmed workloads.

VI. CONCLUSIONS

Benchmarking processor and computer system architectures

650

has become extremely difficult due to the complexity of the
processors and the complexity of the applications that run on
the computers. .

A considerable amount of workloads for computer
architecture evaluation purposes have been done in the field
of the programming systems for estimating the efficiency of
computers operation on the basis of SimOS simulation
environments and symmetric multiprocessor architecture.
The given programming systems and analytical algorithms
such as the RADIX sort algorithm, and the Cholesky
factorization algorithm allow effective demonstration the
statistical information collect by standard measuring systems,
cache miss count and stall time, and calculation of the integral
algorithm of computer efficiency (e.g., capacity, response
time, load characteristics). One of the main problems in
forecasting the efficiency algorithm of concrete symmetric
multiprocessor architecture is the determination of the
workload parameters.

As applied to the SimOS simulation environments and
multiprocessor architecture, both general system measuring
monitors (cache miss count and stall time) and specialized
monitors realized through programs and hardware are used to

collect statistics concerning the parameters of task classes.

w2t
rok

Ipe

[1] P.Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,” IEEE Computer Society, pp. 41-49,
May 1998.

[21 J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy,

“"The Stanford FLASH Multiprocessor,” Proc. of the
2I°Int. Sym. on Computer Architecture, pp. 302-313,
Chicago IL, April 1994.

[3] M. Rosenblum, S.A. Herrod, E. Withchel, and A. Gupta,
"Complete Computer System Simulation: the SimOS
Approach,” IEEE Parallel and Distributed Technology:
System and Application, Vol. 3, No. 4, pp. 34-43,
Winter 1995.



Multi-Program #l x| v} =2 o]-& 3} o 3 3~ Z Multiprocessor2] 4 % 7} ¢} £41

[41 S.A.Herrod, "Using Complete Machine Simulation to
Understand Computer System Behavior,” Ph.D.
Dissertations, Stanford University, Feb. 1998.

[5] Tomado Operating System Project, Univ. of Toronto,
http:/fwww.eecg.toronto.edu/paralle/tornado-on-simos.
html

[6] S.C. Woo, M. Ohara, E. Torrie, I. P. Singh, and A.
Gupta, “The SPLASH-2 Program: Characterization and
Methodological Consideration,” Annual Int. Sym. on
Computer Architecture, pp. 24 -36 June 1995

[71 A. Agawal, R. Bianchini, D. Chaikem, K.L. Jolmson, D.
Kz, J. Kubiatowics, B. Lim, K. Machenzie, and D.
Yeung, “The MIT Alewife Machine: Architecture and
Performance,” Proc. of the 22" Int. Sym. Computer
Architecture, pp. 2-13, May 1995.

[ 8] L. K. John. "More on finding a single number to indicate
overall performance of a benchmark suite,” ACM
SIGARCH Computer Architecture News, Vol. 32, Issue
1, pp. 3-8, March 2004

[9] J. R. Mashey. "War of the benchmark means: time for a
truce,” ACM SIGARCH Computer Architecture News,
Vol. 32, Issue 4, pp. 1-14, September 2004

[10] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer Society, pp.
59-65, May 1998. i

[11]R. P. Weicker, "An Overview of Common Benchmarks,”
IEEE Computer Society, pp. 65-75, December 1990.

[12] L. John, P. Vasudevan and J. Sabarinathan, "Workload

Characterization: Motivation, Goals and methodology,”
pp. 3-12 (also published in “Workload Characterization:
Methodology and Case Studies,” IEEE Computer
Society, 1999).

XN TS|

Taikyeong Jeong received the Ph.D. degree from the

Department of Electrical and Computer
Engineering, the University of Texas at Austin
in 2004. He performed research in the area of
high performance circuit design and power
efficiency system design. He joined the
University of Delaware, where he is now a
research associate under the research grants of
NASA (Grant No. NNGO5GJ38G) in 2004,
working on VLSI design for next generation
space robotics devices and high performance
circuit and system. His research interests include
VLSI design, computer architecture, logic

emulation, and high performance system design.

651



