• Title/Summary/Keyword: switch cell

Search Result 350, Processing Time 0.024 seconds

Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells

  • Yeongju, Yeo;Hayoung, Jeong;Minju, Kim;Yanghee, Choi;Koung Li, Kim;Wonhee, Suh
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.565-570
    • /
    • 2022
  • Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH.

Design of a 12 Bit CMOS Current Cell Matrix D/A Converter (12비트 CMOS 전류 셀 매트릭스 D/A 변환기 설계)

  • Ryu, Ki-Hong;Yoon, Kwang-Sub
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.10-21
    • /
    • 1999
  • This paper describes a 12bit CMOS current cell matrix D/A converter which shows a conversion rate of 65MHz and a power supply of 3.3V. Designed D/A converter utilizes current cell matrix structure with good monotonicity characteristic and fast settling time, and it is implemented by using the tree structure bias circuit, the symmetrical routing method with ground line and the cascode current switch to reduce the errors of the conventional D/A converter caused by a threshold voltage mismatch of current cells and a voltage drop of the ground line. The designed D/A converter was implemented with a $0.6{\mu}m$ CMOS n-well technology. The measured data shows a settling time of 20ns, a conversion rate of 50 MHz and a power dissipation of 35.6mW with a single power supply of 3.3V. The experimental SNR, DNL, and INL of the D/A converter is measured to be 55dB, ${\pm}0.5LSB$, and ${\pm}2LSB$, respectively.

  • PDF

Core Circuit Technologies for PN-Diode-Cell PRAM

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Hong, Sung-Joo;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • Phase-change random access memory (PRAM) chip cell phase of amorphous state is rapidly changed to crystal state above 160 Celsius degree within several seconds during Infrared (IR) reflow. Thus, on-board programming method is considered for PRAM chip programming. We demonstrated the functional 512Mb PRAM with 90nm technology using several novel core circuits, such as metal-2 line based global row decoding scheme, PN-diode cells based BL discharge (BLDIS) scheme, and PMOS switch based column decoding scheme. The reverse-state standby current of each PRAM cell is near 10 pA range. The total leak current of 512Mb PRAM chip in standby mode on discharging state can be more than 5 mA. Thus in the proposed BLDIS control, all bitlines (BLs) are in floating state in standby mode, then in active mode, the activated BLs are discharged to low level in the early timing of the active period by the short pulse BLDIS control timing operation. In the conventional sense amplifier, the simultaneous switching activation timing operation invokes the large coupling noise between the VSAREF node and the inner amplification nodes of the sense amplifiers. The coupling noise at VSAREF degrades the sensing voltage margin of the conventional sense amplifier. The merit of the proposed sense amplifier is almost removing the coupling noise at VSAREF from sharing with other sense amplifiers.

Newly Identified TLR9 Stimulant, M6-395 Is a Potent Polyclonal Activator for Murine B Cells

  • Park, Mi-Hee;Jung, Yu-Jin;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Background: Toll-like receptors (TLRs) have been extensively studied in recent years. However, functions of these molecules in murine B cell biology are largely unknown. A TLR4 stimulant, LPS is well known as a powerful polyclonal activator for murine B cells. Methods: In this study, we explored the effect of a murine TLR9 stimulant, M6-395 (a synthetic CpG ODNs) on B cell proliferation and Ig production. Results: First, M6-395 was much more potent than LPS in augmenting B cell proliferation. As for Ig expression, M6-395 facilitated the expression of both TGF-${\beta}1$-induced germ line transcript ${\alpha}$ ($GLT{\alpha}$) and IL-4-induced $GLT{\gamma}1$ as levels as those by LPS and Pam3CSK4 (TLR1/2 agonist) : a certain Ig GLT expression is regarded as an indicative of the corresponding isotype switching recombination. However, IgA and IgG1 secretion patterns were quite different--these Ig isotype secretions by M6-395 were much less than those by LPS and Pam3CSK4. Moreover, the increase of IgA and IgG1 production by LPS and Pam3CSK4 was virtually abrogated by M6-395. The same was true for the secretion of IgG3. We found that this unexpected phenomena provoked by M6-395 is attributed, at least in part, to its excessive mitogenic nature. Conclusion: Taken together, these results suggest that M6-395 can act as a murine polyclonal activator but its strong mitogenic activity is unfavorable to Ig isotype switching.

Performance Analysis of Bandwidth Allocation Scheme using POBP Method in ATM Networks. (ATM 네트워크에서 POBP 방식을 이용한 대역폭 할당 방법의 성능분석)

  • 한상엽;박광채
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.537-548
    • /
    • 2000
  • ATM is the effective information transmission method which multiply statistical and can accept effective the traffic of the various transmission rate. However, it can happen excessive cell loss probability and cell delay when it have temporarily overload. Therefore, it is required the effective traffic control and network resource management for which guarantee QoS(Quality of Service) in terms of users and bandwidth utilization maximization in terms of networks. In this paper, we proposed POBP(PushOut BP) scheme which mixed pushout scheme with BP(Back Pressure), reactive control scheme recommended at the ATM Forum, to guarantee QoS in two stages ATM switch networks. In proposed method, we have to understand exactly using bandwidth information in real-time and become traffic shaping. Thorough these processes, we can not only use effectively unused bandwidth, but also guarantee the fair bandwidth utilization and then can improve cell-loss possibility happened by congestion states in two stage ATM networks.

  • PDF

A Modularized Charge Equalization Converter for a Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.343-352
    • /
    • 2007
  • This paper proposes a modularized charge equalization converter for hybrid electric vehicle (HEV) lithium-ion battery cells, in which the intra-module and the inter-module equalizer are Implemented. Considering the high voltage HEV battery pack, over approximately 300V, the proposed equalization circuit modularizes the entire $M^*N$ cells; in other words, M modules in the string and N cells in each module. With this modularization, low voltage stress on all the electronic devices, below roughly 64V, can be obtained. In the intra-module equalization, a current-fed DC/DC converter with cell selection switches is employed. By conducting these selection switches, concentrated charging of the specific under charged cells can be performed. On the other hand, the inter-module equalizer makes use of a voltage-fed DC/DC converter for bi-directional equalization. In the proposed circuit, these two converters can share the MOSFET switch so that low cost and small size can be achieved. In addition, the absence of any additional reset circuitry in the inter-module equalizer allows for further size reduction, concurrently conducting the multiple cell selection switches allows for shorter equalization time, and employing the optimal power rating design rule allows fur high power density to be obtained. Experimental results of an implemented prototype show that the proposed equalization scheme has the promised cell balancing performance for the 7Ah HEV lithium-ion battery string while maintaining low voltage stress, low cost, small size, and short equalization time.

Performance Comparison of Multicast ABR Flow Control Algorithms with Fast Overload Indication in ATM Networks (ATM망에서 신속한 폭주통지 기능을 지닌 멀티캐스트 ABR 흐름제어 알고리즘의 성능비교)

  • Kim, Dong-Ho;Kim, Byung-Chul;Cho, You-Ze;Kwon, Yul
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.1
    • /
    • pp.98-107
    • /
    • 2000
  • This paper compares the performance of feedback consolidation algorithms with or without a fast overload indication function which has been recently proposed in the ATM Forum for multicast ABR (Available Bit Rate) services in ATM networks. We use the performance criteria such as the ACR (Allowed Cell Rate) of a source, queue length at a switch, link utilization, fairness, and BRM (Backward Resource Management) cell overhead. Simulation results show that performance of the feedback consolidation algorithms with a fast overload indication function can be improved sign.ificantly than that of algorithms without this function in terms of ramp-down delay, particularly in initial start-up period or under a severe overload situation. The fast overload indication function can be combined with any feedback consolidation algorithm, whereas its performance is highly dependent on an underlying basic feedback consolidation algorithm.

  • PDF

Resistive Memory Switching in Ge5Se5 Thin Films

  • Kim, Jang-Han;Hwang, Yeong-Hyeon;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.326-326
    • /
    • 2014
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states [1-3]. We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Prevents Cells from Apoptosis by Lowering S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase

  • Lee, Sun-Young;Kim, Jeong-Hoon;Jung, Hye-Yun;Chi, Seung-Wook;Chung, Sang-J.;Lee, Chong-Kil;Park, Byoung-Chul;Bae, Kwang-Hee;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.571-573
    • /
    • 2012
  • Glyceraldehyde-3-phosphate (G-3-P), the substrate of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is a key intermediate in several metabolic pathways. Recently, we reported that G-3-P directly inhibits caspase-3 activity in a reversible noncompetitive mode, suggesting the intracellular G-3-P level as a cell fate decision factor. It has been known that apoptotic stimuli induce the generation of NO, and NO S-nitrosylates GAPDH at the catalytic cysteine residue, which confers GAPDH the ability to bind to Siah-1, an E3 ubiquitin ligase. The GAPDH-Siah-1 complex is translocated into the nucleus and subsequently triggers the apoptotic process. Here, we clearly showed that intracellular G-3-P protects GAPDH from S-nitrosylation at above a certain level, and consequently maintains the cell survival. In case G-3-P drops below a certain level as a result of exposure to specific stimuli, G-3-P cannot inhibit S-nitrosylation of GAPDH anymore, and consequently GAPDH translocates with Siah-1 into the nucleus. Based on these results, we suggest that G-3-P functions as a molecule switch between cell survival and apoptosis by regulating S-nitrosylation of GAPDH.

The Implementation of Multi-Port UTOPIA Level2 Controller for Interworking ATM Interface Module and MPLS Interface Module (MPLS모듈과 ATM모듈과의 Cell Mode 인터페이스를 위한 Multi-Port지원 UTOPIA-L2 Controller구현)

  • 김광옥;최병철;박완기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1164-1170
    • /
    • 2002
  • In the ACE2000 MPLS system, MPLS Interface Module(MIM) is composed of an ATM Interface Module and a HFMA performing a packet forwarding. In the MIM, the HFMA RSAR receive cells from the Physical layer and reassemble the cells. And the IP Lookup controller perform a packet forwarding after packet classification. Forwarded packet is segmented into cells in the HFMA TSAR and transfer to the ALMA for the transmission to an ATM cell switch. When the MIM make use of an ATM Interface Module, it directly connect the ALMA with a PHY layer using the UTOPIA Level2 interface. Then, an ALMA performs Master Mode. Also, the HFMA TSAR performs the Master Mode in the MIM. Therefore, the UTOPIA-L2 Controller of the Slave Mode require for interfacing between an ALMA and a HFHA TSAR. In this paper, we implement the architecture and cell control mechanism for the UTOPIA-L2 Controller supporting Multi-ports.