• Title/Summary/Keyword: switch MMIC

Search Result 23, Processing Time 0.022 seconds

Design of MMIC SPST Switches Using GaAs MESFETs (GaAs MESFET을 이용한 MMIC SPST 스위치 설계)

  • 이명규;윤경식;형창희;김해천;박철순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.371-379
    • /
    • 2002
  • In this paper, the MMIC SPST switches operating from DC to 3GHz were designed and implemented. Prior to the design of switches, the small and large-signal switch models were needed to predict switch performance accurately. The newly proposed small-signal switch model parameters were extracted from measured S-parameters using optimization technique with estimated initial values and boundary limits. In the extraction of large-signal switch model parameters, the current source was modeled by fitting empirical equations to measured DC data and the charge model was derived from extracted channel capacitances from measured S-parameters varying the drain-source voltage. To design basic series-shunt SPST switches and isolation-improved SPST switches, we applied this model to commercial microwave circuit simulator. The improved SPST switches exhibited 0.302dB insertion loss, 35.762dB isolation, 1.249 input VSWR, 1.254 output VSWR, and about 15.7dBm PldB with 0/-3V control voltages at 3GHz.

Technological Trends of C-/X-/Ku-band GaN Monolithic Microwave Integrated Circuit for Next-Generation Radar Applications (차세대 레이더용 C-/X-/Ku-대역 GaN 집적회로 기술 동향)

  • Ahn, H.K.;Lee, S.H.;Kim, S.I.;Noh, Y.S.;Chang, S.J.;Jung, H.U.;Lim, J.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.11-21
    • /
    • 2022
  • GaN (Gallium-Nitride) is a promising candidate material in various radio frequency applications due to its inherent properties including wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. Notably, AlGaN/GaN heterostructure field effect transistor exhibits high operating voltage and high power-density/power at high frequency. In next-generation radar systems, GaN power transistors and monolithic microwave integrated circuits (MMICs) are significant components of transmitting and receiving modules. In this paper, we introduce technological trends for C-/X-/Ku-band GaN MMICs including power amplifiers, low noise amplifiers and switch MMICs, focusing on the status of GaN MMIC fabrication technology and GaN foundry service. Additionally, we review the research for the localization of C-/X-/Ku-band GaN MMICs using in-house GaN transistor and MMIC fabrication technology. We also discuss the results of C-/X-/Ku-band GaN MMICs developed at Defense Materials and Components Convergence Research Department in ETRI.

Space Qualification of MMICs for COMS Communications Transponder (통신해양기상위성 통신 중계기용 MMIC의 우주인증)

  • Jang, Dong-Pil;Yeom, In-Bok;O, Seung-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.56-62
    • /
    • 2006
  • This paper describes the MMIC product qualification of the Ka band satellite transponder for the COMS(Communication, Ocean and Meteorological Satellite). Ka-band active equipment for the COMS communications transponder are being developed by using 12 kinds of MMICs which include low noise amplifiers, medium power amplifiers, frequency mixers, frequency multipliers, RF switch, and HEMT attenuator MMIC, Those MMICs had been fabricated at the MMIC production foundry of northrop Grumman Space Technology (Velocium) which is qualified for space application, and experienced in various space programs during past decades. For the MMIC product qualification, Visual inspection and SEM inspection had been performed, and burn-in test for 240 hours and accelerated life-test for 1000 hours had been done on test fixtures of individual MMIC products at $125^{\circ}C$. Additionally, infrared temperature scanning and finite element simulation were performed to analyze and confirm the channel temperature of semiconductor devices on several representatives of those MMIC products that os one of the most important factors in performance degradation and life reduction.

  • PDF

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.

Development and Manufacture of W-band MMIC Chip and manufacture of Transceiver (W-대역 MMIC 칩 국내 개발 및 송수신기 제작)

  • Kim, Wansik;Jung, Jooyong;Kim, Younggon;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.175-181
    • /
    • 2019
  • For the purpose of Application to the small radar sensor, the MMIC Chip, which is the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 0.1㎛ GaAs pHEMT process, and compared with the MMIC chip purchased overseas. The noise figure of low noise amplifier, insertion loss of the switch and image rejection performance of the down-converted mixer MMIC chip showed better characteristics than those of commercial chips. The MMIC chip developed in domestic was applied to the transmitter and receiver through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication is 9.17 dB, which is close to the analysis result. As a result, it is judged that the transceiver can be applied to the small radar sensor better than the MMIC chip purchased overseas.

Implementation of Quad-Band p-HEMT SP6T Switch for Handset Applications (개인 휴대통신용 4중대역 p-HEMT SR6T 스위치 구현)

  • Shin, One-Chul;Jeong, In-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.97-101
    • /
    • 2011
  • Quad band p-HEMT SP6T switch for handset applications was developed. To achieve the low insertion loss and high isolation, trade-off between "On" state and "Off" state was considered by optimization of unit cell. Especially, in case isolation between transmit port and receive port, it was achieved by large capacitors and miniaturization of chip size was achieved by common voltage control and ground using back via process. Designed SP6T switch has size of $950um{\times}100um$ and take into consideration the gate recess error, excellent loss and isolation was confirmed in operating frequency.

Design and Fabrication of 5-Bit Broadband MMIC Phase Shifter (5-Bit 광대역 MMIC 위상 변위기 설계 및 제작)

  • 정상화;백승원;이상원;정기웅;정명득;우병일;소준호;임중수;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2002
  • 5-bit broadband MMIC phase shifter has been designed and fabricated. For the broadband performance, 11.25$^{\circ}$, 22.5$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$ bit have been designed with Lange coupler and 180$^{\circ}$ bit has been implemented by using shorted coupled line with Lange coupler and $\pi$-network of transmission line. Due to Lange coupler with large size, the Lange couplers have been folded far circuit size reduction. Low loss PIN diode has been utilized as a switch for each bit. Fabricated 5-bit broadband phase shifter shows the measured results that RMS phase error of 5 major phases is 3.5$^{\circ}$, maximum insertion loss is 12.5 dB, and maximum input and output return loss are 7 dB and 10 dB, respectively. The size of fabricated phase shifter is 6.5$\times$5.3 $ extrm{mm}^2$.

Broadband Microwave SPDT Switch Using CPW Impedance Transform Network (CPW 임피던스 변환회로를 이용한 광대역 마이크로파 SPDT 스위치)

  • Lee Kang Ho;Park Hyung Moo;Rhee Jin Koo;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.57-62
    • /
    • 2005
  • This paper describes the design of a high performance microwave single pole double throw (SPDT) monolithic microwave integrated circuit switch using GaAs pHEMT process. The switch design proposes a novel coplanar waveguide (CPW) impedance transform network which results in the low insertion loss and high isolation by compensating for the FET parasitics to get the low on-resistance and low off-capacitance. The proposed switch has the measured isolation of better than 24 dB and insertion loss of less than 2.6 dB from 53 to 61 GHz. The chip is fabricated with the size of 2.2mm $\times$ 1.6 mm.

A Study on the Diplexer Switch of High Isolation Using Varactor Diode (바랙터 다이오드를 이용한 높은 격리도를 갖는 DIPLEXER 스위치에 관한 연구)

  • Kang Myung-Soo;Park Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.178-184
    • /
    • 2005
  • In this paper, using diplexer structure and varactor diode controlled by reverse bias voltage for diplexer switch gives possibilities to improve isolation and current characteristics. 1 have newly designed switch with high isolation by application varactor diode corresponding to capacitor of diplexer. The low-pass filter for proposed tunable diplexer passes the microwave signal in the bandwidth for wireless cellular network systems and high-pass filter passes it in the bandwidth for wireless personal communication services (PCS) network systems. As the capacitance of the low-pass filter increases, the cut-off frequency can be moved to low frequency, so that the switch is on state in cellular bandwidth and off state in the PCS bandwidth, in contrast to, as the capacitance for attenuation characteristic of high-pass filter increases, it can be moved to high frequency, so that the switch is off state and on state in the cellular bandwidth. it is possible to improve isolation and current consumption characteristics by application diplexer design methods and varactor diode. 1 expect that the tunable diplexer circuit and design methods should be able to find applications on MMIC and low temperature copired ceramic (LTCC).

Design of MMIC SPDT Switches in the ISM Band Using GaAs MESFETs (GaAs MESFET를 이용한 ISM 대역 MMIC SPDT 스위치 설계)

  • Park, Hun;Yun, Kyung-Sik;Ji, Hong-Koo;Kim, Hae-Cheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.179-184
    • /
    • 2003
  • In this paper, an asymmetric topology of MMIC SPDT switch was proposed to increase the isolation in the receiving path and decrease the insertion loss with higher P1dB in the transmitting path for the ISM band. This SPDT switch was implemented with 0.5㎛ GaAs MESFETs processed by ETRI for the IDEC MPW project. For the receiving path the measured insertion losses were 1.518dB at 3GHz and 1.777dB at 5.75GHz and the isolations were 38.474dB at 3GHz and 29.125dB at 5.75GHz. For the transmitting path the insertion losses were 0.916dB at 3GHz and 1.162dB at 5.75GHz and the isolations were 23.259dB at 3GHz and 16.632dB at 5.75GHz. Compared to the symmetric topology the isolations of the receiving path for the asymmetric one were improved by 15.9dB at 3GHz and 11.9dB at 5.75GHz and its insertion loss was increased by about 0.6dB. In addition, P1dB of 21.5 dBm for the transmitting path was obtained, which is increased by 3.86dB compared to the symmetric one.