• 제목/요약/키워드: swirl ratio

검색결과 330건 처리시간 0.024초

4밸브 디젤기관의 흡기포트 형상에 따른 실린더 내 편심 선회유동 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of the In-cylinder Eccentricity Swirl Flow with Intake Port Shapes in a 4 Valve Diesel Engine)

  • 이지근;김덕진;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.59-72
    • /
    • 1998
  • This experimental study was carried out to investigate the characteristics of the in-cylinder eccentricity swirl flow generated by a 4 valve cylinder head with a tangential and a helical intake port. the measurements of the in-cylinder velocity field have been made by a two-channel LDA system. The mean flow coefficient(Cf(meam)), swirl ratio(Rs) and mass flowrate with valve eccentricity ratios and an intake port partition between the two intake ports were measured in the steady flow test fig using the ISM(impulse swirl meter). The experimental results indicated that the mass flowrate through the tangential intake port was 19% and 7.7% more than that of the helical intake port in case of with and without intake port partition respectively. There was a tendency to be a single rotation flow in swirl flow fields formed by a 4 valve cylinder head because of the interaction between the two intake ports. As the intake port partition was not set between flow coefficient(Cf(mean)) was 7.35%.

나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구 (Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics)

  • 이지근;강신재
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF

Steady-Flow Characteristics and Its Influence on Spray for Direct Injection Diesel Engine

  • Jeon, Chung-hwan;Park, Seung-hwan;Chang, Young-june
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.986-998
    • /
    • 2002
  • Flow and spray characteristics are critical factors that affect the performance and exhaust emissions of a direct injection diesel engine. It is well known that the swirl control system is one of the useful ways to improve the fuel consumption and emission reduction rate in a diesel engine. However, until now there have only been a few studies on the effect of flow on spray. Because of this, the relationship between the flow pattern in the cylinder and its influence on the behavior of the spray is in need of investigation. First, in-cylinder flow distributions for 4-valve cylinder head of DI (Direct Injection) Diesel engine were investigated under steady-state conditions for different SCV (Swirl Control Valve) opening angles using a steady flow rig and 2-D LDV (Laser Doppler Velocimetry). It was found that swirl flow was more dominant than that of tumble in the experimented engine. In addition, the in-cylinder flow was quantified in terms of swirl/tumble ratio and mean flow coefficient. As the SCV opening angle was increased, high swirl ratios more than 3.0 were obtained in the case of SCV -70° and 90°. Second, spray characteristics of the intermittent injection were investigated by a PDA (Phase Doppler Anemometer) system. A Time Dividing Method (TDM) was used to analyze the microscopic spray characteristics. It was found that the atomization characteristics such as velocity and SMD (Sauter Mean Diameter) of the spray were affected by the in-cylinder swirl ratio. As a result, it was concluded that the swirl ratio improves atomization characteristics uniformly.

수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향 (Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame)

  • 김한석;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석 (Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine)

  • 권태윤;최경호
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

SCV를 장착한 2밸브 Sl 가시화기관의 연소특성에 관한 연구 (A Study of the Combustion Characteristics Using a 2-valve Sl Optically Acessible Engine with SCV)

  • 정구섭;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1692-1701
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve SI optically accessible engine with swirl control valve(SCV). It adapted three different types of SCV(open ratio 72.5%, 78%, 59%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt) were calculated to explain burn rate and flame speed. From acquired flame images, we inspected the flame propagation direction, flame area, and flame centroid. Flame propagation direction showed different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame images at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

연료 인젝터 스월 챔버 유무에 따른 단일 인젝터 페이스 냉각 특성 연구 (An Experimental Study on Cooling Characteristics for Uni-element Injector face according to the Swirl Chamber in Fuel Injector)

  • 전준수;신훈철;양재준;고영성;김유;김지훈;정해승
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2007
  • 동축 스월 인젝터 중에서 연료 인젝터의 스월 챔버 유무에 따른 인젝터 페이스의 냉각 특성을 알아보기 위해서 연료의 스월 챔버의 유무 조건만 다르고 모든 설계 조건이 같은 두 개의 인젝터를 만들었으며, 장시간 연소가 가능하도록 물을 이용한 재생 냉각 채널을 인젝터 페이스에 설치하였다. 두 개의 인젝터를 이용하여 연소 실험을 수행한 후 인젝터 페이스의 냉각 특성을 비교하였고, O/F ratio 2.0일 때와 O/F ratio 1.7일 때의 연소 특성 및 인젝터 페이스의 냉각 특성을 살펴보았다.

  • PDF

IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구 (A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors)

  • 이충훈
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.

와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선 (Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine)

  • 이창규;허윤근;서신원
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.