• 제목/요약/키워드: swelling kinetics

검색결과 41건 처리시간 0.024초

Polymethacrylic Acid 하이드로겔 매트릭스로부터의 pH 의존성 약물 방출 (pH-Dependent Drug Release from Polymethacrylic Acid Hydrogel Matrix)

  • 김경충;김길수;이승진
    • Journal of Pharmaceutical Investigation
    • /
    • 제19권4호
    • /
    • pp.179-183
    • /
    • 1989
  • Drug release experiments were performed based on pH-sensitive swelling behaviors of polymethacrylic acid. 5-Fluorouracil as a nonionic model drug revealed release patterns depending solely on pH-dependent swelling kinetics of polymethacrylic acid. In contrast, release of propranolol hydrochloride as a cationic model drug was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics. Accordingly, a zero-order release pattern was obtained at pH 7, which was distinguished from the general matrix type drug release pattern.

  • PDF

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

Preparation and Swelling Behaviors of Hydrogel Composed of Alginate, Poly(N-isopropylacrylamide) and Polyaniline

  • Lee, Young Moo;Seo, Sung Mi;Lee, Sang Bong
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.37-43
    • /
    • 2004
  • Comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide) (PNIPAAm) were prepared to manifest rapid temperature and pH sensitivity. To appear the electro-sensitivity, the polyaniline, conducting polymer, was added into the matrix. The swelling kinetics and ratios were compared under the various compositions of polyaniline. The swelling behaviors revealed that conducting polymer/hydrogel composites could control the swelling ratio and kinetics. The addition of polyaniline in the matrix improved the thermal stability in comparison with that of the hydrogel without polyaniline. In temperature sensitivity, the adding the polyaniline into the matrix decreased the degree of change in the swelling ratio. The swelling ratios continuously increased with increasing pH values. The drug release rate from the hydrogel increased with the adding the polyaniline and the applying the direct voltage to the hydrogels.

pH-민감성 삼성분계 공중합체 젤의 합성 및 팽윤 속도론 (Synthesis and Swelling Kinetics of a Cross-Linked pH-Sensitive Ternary Copolymer Gel System)

  • Zafar, Zafar Iqbal;Malana, M.A.;Pervez, H.;Shad, M.A.;Momma, K.
    • 폴리머
    • /
    • 제32권3호
    • /
    • pp.219-229
    • /
    • 2008
  • A pH sensitive ternary copolymer gel was synthesized in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through radical polymerization of vinyl acetate (VA), acrylic acid (AA) and methyl acrylate(MA) with a weight ratio of 1 : 1.3 : 1. A number of experiments were carried out to determine the swelling behavior of the gel under a variety of pH conditions of the swelling medium. As the pH of the swelling medium was changed from 1.0 to 8.0 at $37^{\circ}C$, the gel showed a shift in the pH-dependent swelling behavior from Fickian (n=0.3447) to non-Fickian (n=0.9125). The resulting swelling parameters were analyzed using graphical and statistical methods. The results showed that the swelling of the gel was controlled by the pH of the medium, i.e. $n=n_o{\exp}(S_{C}pH)$, where n is the diffusion exponent, $n_o(=28.9645{\times}10^{-2})$ is the pre-exponential factor and $S_C$(=0.1417) is pH sensitivity coefficient. The swelling behavior of the gel was also examined in aliphatic alcohols. The results showed that the rate of swelling increased with increasing number of carbon atoms in the alcoholic molecular chain.

Preparation and characterization of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels

  • Baghaei, Shaghayegh;Khorasani, Mohammad T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권2호
    • /
    • pp.105-116
    • /
    • 2014
  • Synthesis of interpenetrating polymer network (IPN) of chitosan-gelatin (Cs-Ge) (as a primary network) and N-isopropylacrylamide (NIPAAm) monomer (as the secondary network) was carried out with different ratio. Its structure was characterized by FT-IR, which indicated that the IPN was formed. The memberanes were studied by swelling, weight loss with time. The interior morphology of the IPN hydrogels was revealed by scanning electron microscopy (SEM); the IPN hydrogels showed a interpenetrated network of NIPAAm/chitosan has layers with more minute stoma and canals compared to interpenetrated network of NIPAAm/gelatin. Lower critical solution temperature (LCST), equilibrium swelling ratio (ESR) and deswelling kinetics were measured. The DSC results noticed that LCST of IPN hydrogels with different ratio of Cs/Ge/PNIPAAm are around $33{\pm}2^{\circ}C$. The ESR obtained results showed that with a ratio of Cs/Ge/NIPAAm: 1/1/6, the swelling ratio increased drastically from room temperature to $36^{\circ}C$ but with a ratio of Cs/Ge/PNIPAAm: 1/3/6, decrease significantly at the same condition. Therefore the hydrogels have been changed from a hydrophilic structure to a hydrophobic structure. Furthermore with an increase in temperature from room to the LCST, the ESR of IPN with higher concentration of (PNIPAAm) and (Ge) decreases but de-swelling kinetics of them are faster. Due to the suitable and different kinetics of de-swelling and the equilibrium swelling ratio (ESR) in various proportions, and because of the morphology inside the mass which confirms other tests, these hydrogels are very appropriate as a smart thermosensitive hydrogels with rapid response.

폴록사머-폴리아크릴산 IPNs의 약물 조절 방출 (Drug Release Control of Poloxamer-Poly(acrylic acid) Interpenetrating Polymer Networks)

  • 변은정;박주애;이승진;김길수
    • 약학회지
    • /
    • 제41권1호
    • /
    • pp.22-29
    • /
    • 1997
  • Poloxamer-poly (acrylic acid) (PAA) interpenetrating polymer networks (IPNs) were prepared via matrix polymerization of acrylic acid with poloxamer prepolymer. The equilibrium s welling of poloxamer/PAA IPNs was determined in various pH medium. The swelling of poloxamer/PAA IPNs was more affected by pH difference compared with the swelling of homo PAA gel due to protonation and deprotonation of the PAA network, followed by reversible formation and dissociation of the interpolymer complex due to hydrogen bonding between acidic hydrogens and ether oxygens. Nonionic/anionic/cationic drugs were incorporated into IPN matriceds as a model drug and their release behavior was studied. Nonionic, drug revealed release patterns depending solely on pH dependent swelling kinetics. In contrast, the release of ionic drugs was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics.

  • PDF

Preparation of Alginate/Poly(N-isopropylacrylamide) Hydrogels Using Gamma-ray Irradiation Grafting

  • Lee, Young-Moo;Lee, Sang-Bong;Seo, Sung-Mi;Lim, Youn-Mook;Cho, Seong-Kwan;Nho, Young-Chang
    • Macromolecular Research
    • /
    • 제12권3호
    • /
    • pp.269-275
    • /
    • 2004
  • To graft N-isopropylacrylamide (NIPAAm) onto alginate, varying dosages of ${\gamma}$-rays were irradiated onto alginate films in deionized water and methanol media, which are non-solvents of alginate. We investigated the hydrogels graft ratio, mechanical strength, swelling kinetics and ratio, and behavior with respect to drug release. The graft yield of NIPAAm increased upon increasing the irradiation dose. The use of the aqueous solution increased the graft yield relative to that obtained in methanol. The mechanical strength of the grafted hydrogels increased after grafting with NIPAAm. In a study of the swelling kinetics, we found that all hydrogels reached an equilibrium swollen state within 3 h. The equilibrium swelling ratio of the hydrogels decreased upon increasing the irradiation dose. The swelling ratio of the hydrogels decreased dramatically between 30 and 35$^{\circ}C$ because phase separation of NIPAAm occurred at 32$^{\circ}C$. The swelling process, with respect to the temperature change, was repeatable. An NIPAAm-grafted alginate containing a drug sustained its release rate until 3 h after an initial high drug release caused by a burst effect.

Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

  • Pourjavadi, Ali;Soleyman, Rouhollah;Bardajee, Ghasem Rezanejade;Ghavami, Somayeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2680-2686
    • /
    • 2009
  • The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

실리콘 마트릭스로부터의 약물조절 방출-약물 및 방출조절제의 물성이 방출기전에 미치는 영향- (Controlled Release of Drugs from Silicone Rubber Matrices-Effects of Physical Properties of Drugs and Release Controlling Agents on Drug Release Mechanisms-)

  • 전소영;이승진
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권4호
    • /
    • pp.237-245
    • /
    • 1991
  • Matrix type silicone rubber devices were designed for long-term implantable drug delivery system. Release controlling agents (RCA), i.e., polypropylene glycol, polyethylene glycol, were employed to control drug release from the devices. The release rate of drug from RCA dispersed silicone matrices was mainly dependent on hydrophilicity-hydrophobicity of drug and RCA. In the case of hydrophilic drug, the release from the RCA dispersed matrix was regulated by swelling kinetics. Especially when the relatively hydrophobic polypropylene glycol was used, swelling control mechanism induced zero-order release kinetics. Whereas, the release of hydrophobic drug was resulted from partition mechanism. The effect of RCA was to increase drug diffusivity.

  • PDF

염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템 (A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride)

  • 김현조;레자 파시히
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF