Synthesis and Swelling Kinetics of a Cross-Linked pH-Sensitive Ternary Copolymer Gel System

pH-민감성 삼성분계 공중합체 젤의 합성 및 팽윤 속도론

  • Zafar, Zafar Iqbal (Department of Chemistry Bahauddin Zakariya University) ;
  • Malana, M.A. (Department of Chemistry Bahauddin Zakariya University) ;
  • Pervez, H. (Department of Chemistry Bahauddin Zakariya University) ;
  • Shad, M.A. (Department of Chemistry Bahauddin Zakariya University) ;
  • Momma, K. (Department of Chemistry Bahauddin Zakariya University)
  • Published : 2008.05.30

Abstract

A pH sensitive ternary copolymer gel was synthesized in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through radical polymerization of vinyl acetate (VA), acrylic acid (AA) and methyl acrylate(MA) with a weight ratio of 1 : 1.3 : 1. A number of experiments were carried out to determine the swelling behavior of the gel under a variety of pH conditions of the swelling medium. As the pH of the swelling medium was changed from 1.0 to 8.0 at $37^{\circ}C$, the gel showed a shift in the pH-dependent swelling behavior from Fickian (n=0.3447) to non-Fickian (n=0.9125). The resulting swelling parameters were analyzed using graphical and statistical methods. The results showed that the swelling of the gel was controlled by the pH of the medium, i.e. $n=n_o{\exp}(S_{C}pH)$, where n is the diffusion exponent, $n_o(=28.9645{\times}10^{-2})$ is the pre-exponential factor and $S_C$(=0.1417) is pH sensitivity coefficient. The swelling behavior of the gel was also examined in aliphatic alcohols. The results showed that the rate of swelling increased with increasing number of carbon atoms in the alcoholic molecular chain.

Keywords

References

  1. M. Ashford, J. T. Fell, D. Attwood, and W. P. Sharma, Int. J. Pharm., 91, 241 (1993) https://doi.org/10.1016/0378-5173(93)90344-F
  2. R. Peeters and E. Kinget, Int. J. Pharm., 94, 125 (1993) https://doi.org/10.1016/0378-5173(93)90016-9
  3. N. M. Ranjha and E. Doelker, S.T.P. Pharma. Sci., 9, 335 (1999a)
  4. N. M. Ranjha and E. Doelker, S.T.P. Pharma. Sci., 9, 341 (1999b)
  5. M. Garretto, R. H. Riddel, and C. S. Winans, Gastrogentrology, 84, 1162 (1983)
  6. T. Yamaguchi, K. Sasaki, Y. Kurosaki, T. Nakayama, and T. Kimura, J. Drug Targeting, 2, 123 (1994) https://doi.org/10.3109/10611869409015900
  7. S. Rao and W. A. Ritschel, S.T.P. Pharma. Sci., 5, 19 (1995)
  8. M. Torres-Lugo and N. A. Peppas, Macromolecules, 32, 6646 (1999) https://doi.org/10.1021/ma990541c
  9. Y. Kimura, Y. Makita, T. Kumaga, H. Yamane, T. Kitao, H. Sasatani, and S. I. Kim, Polymer, 33, 5294 (1992) https://doi.org/10.1016/0032-3861(92)90814-D
  10. S. M. Reddy, Y. R. Sinha, and D. S. Reddy, Drug of Todat., 35, 537 (1999) https://doi.org/10.1358/dot.1999.35.7.548266
  11. S. K. Bajpai and S. Dubey, Iranian Polym. J., 13, 189 (2004)
  12. A. S. Hickey and N. A. Peppas, J. Membrane Sci., 107, 229 (1995) https://doi.org/10.1016/0376-7388(95)00119-0
  13. B. Kim, K. L. Flamme, and N. A. Peppas, J. Appl. Polym. Sci., 89 1606 (2003) https://doi.org/10.1002/app.12337
  14. W. S. W. Shalaby and K. Park, Pharm. Res., 7, 816 (1990) https://doi.org/10.1023/A:1015956714669
  15. M. K. Krusic and J. Filipovic, Polymer, 47, 148 (2006) https://doi.org/10.1016/j.polymer.2005.11.002
  16. S. K. Bajpai and S. Sharma, Reactive & Functional Polymers, 59, 129 (2004) https://doi.org/10.1016/j.reactfunctpolym.2004.01.002
  17. E. Diez-Pena, I. Quijada-Garrido, and J. M. Barrales-Rienda, Macromolecules, 35, 8882 (2002) https://doi.org/10.1021/ma020895v
  18. J. M. Mazon-Arechederra, M. P. Delgado-Quintero, and J. M. Barrales-Rienda, J. Polym. Sci. Polym. Chem. Ed., 20, 25 (1982) https://doi.org/10.1002/pol.1982.170200103
  19. I. D. Robinson, Photogr. Sci. Eng., 8, 220 (1964)
  20. H. J. Schott, Macromol. Sci. Phys., 31, 1 (1992) https://doi.org/10.1080/00222349208215453
  21. H. J. Schott, Pharm. Sci., 81, 467 (1992) https://doi.org/10.1002/jps.2600810516
  22. H. L. Frisch, Polym. Eng. Sci., 20, 2 (1980) https://doi.org/10.1002/pen.760200103
  23. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Int. J. Phar., 15, 25 (1983) https://doi.org/10.1016/0378-5173(83)90064-9
  24. B. Kim, K. L. Flamme, and N. A. Peppas, J. Appl. Polym. Sci., 89,1606 (2003) https://doi.org/10.1002/app.12337
  25. A. R. Berens and H. B. Hopfenberg, Poplymer, 19, 489 (1978) https://doi.org/10.1016/0032-3861(78)90269-0
  26. M. Zhai, Y. Chen, M. Yi, and H. Ha, Polym. Int., 53, 33 (2004) https://doi.org/10.1002/pi.1413
  27. G. Yi, Y. Cui, S. Yang, Z. Kang, Y. Cui, and J. Guo, J. Chem. Ind. Eng.(China), 56, 1783 (2005)
  28. H. J. Chun, S. B. Lee, S. Y. Nam, S. H. Ryu, S. Y. Jung, S. H. Shin, S. I. Cheong, and J. W. Rhim, J. Ind. Eng. Chem., 11, 556 (2005)
  29. B. P. Lisa and N. A. Peppas, Biomaterials, 11, 635 (1990) https://doi.org/10.1016/0142-9612(90)90021-H
  30. E. E. Jeannine, M. Mara, N. Jun, and N. B. Christopher, Polymer, 45, 1503 (2004) https://doi.org/10.1016/j.polymer.2003.12.040
  31. J. Zhang and N. A. Peppas, Macromolecules, 33, 102 (2000) https://doi.org/10.1021/ma991398q
  32. J. Shuping, L. Mingzhu, Z. Fen, C. Shilan, and N. Aizhen, Polymer, 47, 526 (2006)
  33. N. M. Ranjha, Pak. J. Pharmaceutical Sci., 12, 33 (1990)
  34. R. W. Korsmeyer and N. A. Peppas, Cont. Rel. Delivery Syst., 4, 7 (1983)
  35. N. A. Peppas and C. S. Brazel, Polymer, 40, 3383 (1999) https://doi.org/10.1016/S0032-3861(98)00546-1