• Title/Summary/Keyword: sustainable harvest

Search Result 47, Processing Time 0.021 seconds

A mathematical model of the commercial harvest of Palmaria palmata (Palmariales, Rhodophyta) on Digby Neck, Nova Scotia, Canada

  • Lukeman, Ryan J.;Beveridge, Leah F.;Flynn, Andrea D.;Garbary, David J.
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • A mathematical model of the commercial harvest of Palmaria palmata (Dulse) is presented based on a logistic model and field data collected on Digby Neck, Nova Scotia from 14 harvested shores during May to August, 2010. Field observations used to estimate model parameters included cover of Dulse before and after harvest from Dulse dominated boulders for which surface area was estimated, and from which fresh biomass of harvested Dulse was weighed. Over all the surveys the average harvest fraction was about 50%, and the total resource was about $1,600g\;m^{-2}$. With growth rates in excess of 4% per day and a 50% harvest of the standing crop each month, the model suggests that the Dulse resource is sustainable at current harvest levels.

Continuous Microalgae Separation Process Using Ultrasonic Waves (초음파를 이용한 미세조류 연속분리공정)

  • Kim, Sung Bok;Jeong, Sang Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.407-413
    • /
    • 2015
  • Research for renewable energy is being performed since it has the merits of little pollution of the environment and sustainable energy resources. Microalgae is attractive as a renewable energy resource. Biomass of the microalgae can be produced by mass culturing, and bulk harvest technology of is needed to produce biomass continuously. Recently, ultrasonic waves were used to harvest the cultivated microalgae continuously. In this study, the separation process using ultrasonic waves was performed to effectively harvest the microalgae. An ultrasonic wave separation resonator was designed and manufactured based on the acoustic field analysis. Separation experiments using design of experiment were carried out, and the influence of experimental variables from the ultrasonic wave separation process was investigated. Mixing conditions of variables were estimated to obtain high separation efficiency and a large microalgae harvest. Experimental results for suitable mixing conditions were compared with simulation results calculated from the state equation.

A Study on the Program Development for Organic Farming with the Concept of Self-harvest (유기농 셀프수확 프로그램 개발 연구)

  • Yoo, Duck-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.35-53
    • /
    • 2009
  • The theme-type self-harvest concept proposed in this research will be applied as a relevant reference in planning and realizing urban-rural exchange facilities at the village level. The aim of this paper is to describe the concept, to characterize the self-harvesters and organic farmers involved, to illustrate the ecological, economic and social interaction and the possible constraints of the concept. What is more important, however, is to develop programs for consultants, organic farmers and green-minded consumers, to vitalize direct transaction. The proponents of self-harvest are convinced that this concept leads to ecological, economic and social benefits, which will help to design a sustainable food supply system for small, medium and large cities.

  • PDF

Sustainable Production Strategy of Pine Mushroom (Tricholoma matsutake) using the Maximum Entropy Technique (최대 엔트로피 기법으로 도출한 지속 가능한 송이 생산 전략)

  • Choi, Junyeong;Koo, Ja-Choon;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.365-371
    • /
    • 2013
  • Pine mushroom (Tricholoma matsutake) is one of the most profitable forest products in Korea. We postulated a hypothesis that a high rate of returns to labor input could make the harvest of pine mushroom off the optimum level. In the view of developing a sustainable production strategy for pine mushroom producers, production of pine mushroom collectors and pine mushroom growth function were estimated using maximum entropy method. Annual pine mushroom production and labor input were the data used in the estimation of production function of pine mushroom collectors and pine mushroom growth function. The level of sustainable maximum production derived from the estimated function. The production function estimated shows that production of pine mushroom is affected more by the resource of pine mushroom stocked in the forests than by labor that households put in forestry business. The production function of mushroom collectors and the estimated growth function indicate that pine mushroom harvests for the period of 2005-2011 did not reach the potential level of maximum sustainable production. Therefore, we suggest that pine mushroom harvest should be controlled until the resource stock of pine mushroom in the forests increases to the level of maximum sustainable production.

Estimation of Optimal Harvest Volume for the Long-term Forest Management Planning using Goal Programming (장기산림경영계획의 목표수확량 산출을 위한 목표계획법의 적용)

  • Won, Hyun-Kyu;Kim, Young-Hwan;Kwon, Soon-Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.125-131
    • /
    • 2009
  • To facilitate the sustainable forest management, Forest Service in Korea has assigned 2.9 million hectare forests as 'intensive management forests' and encouraged local governments to develop a strategic management plan for their forests. One of problems for the sustainable forest management in Korea is the skewed distribution of forest age classes. Currently the majority of forestlands in Korea is occupied by age classes III and IV. In this study, we intended to find an optimum harvest volume, which enable one to make the intensive management forest in Youngdong-Gun evenly distributed for the age classes and allow an even harvest volume through a 50 year time horizon. To develop an optimization model, we applied the goal programming technique which is adequate for a multi-purpose management planning. The results indicated that it is necessary to harvest 1.2 million cubic meters in each decade to achieve the most stable distribution of age classes for the study site. The harvest volume target resulted from this study would be used in a management planning or an associated policy making process in the future.

A Policy Direction of Vessel Buyback Program for Coastal and Offshore Fisheries in Korea (우리나라 연근해어선감척사업의 정책방향에 관한 연구)

  • Pyo, Hee-Dong;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.323-333
    • /
    • 2005
  • The paper is to serve as a guide for deciding on a desirable direction for the vessel buyback program, reviewing their performance and economic effects from fish harvest reduction due to not reaching MSY. Compared with maximum willingness to pay for vessel buyback programs designed to avoid economic losses occurring as a result of overfishing, the portions of investment costs for buyback program are so small comparatively to the range of 0.32% to 12.19% at the annual base. The economic loss effects occurred in terms of the reduction of fishing harvest are comprehensively estimated at the present value of 30,877 billion won since 1971, and exceeded the revenues for fish harvests from 1999. In order to resole fish stocks through a vessel buyback program, this paper recommends that the yield should be reduced to less than the intrinsic growth rate. Otherwise, the buyback program policy eventually fails regardless of the temporal effect of benefits. This paper further argues that technical policy tools such as fishing grounds, fishing seasons, size of fish and minimum size of meshes should be effectively utilized.

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters (압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰)

  • Rasheed, Aamir;Park, Hyunje;Sohn, Min Kyun;Lee, Tae Hyeong;Kang, Dae Joon
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.54-88
    • /
    • 2020
  • Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.

Fruit Quality, Total Phenol Content, and Antioxidant Activity of Fruit Obtained from a Sustainably Managed vs Conventionally Managed Asian Pear (Pyrus pyrifolia Nakai) Orchard (유기농과 관행재배 된 배의 과실품질과 페놀함량 및 항산화 활성 비교)

  • Jo, Jung-An;Kim, Wol-Soo;Choi, Hyun-Sug
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.169-173
    • /
    • 2010
  • Although fruit grown under sustainable farming conditions is believed to be healthier for humans than is fruit grown by conventional cultivation, little scientific information on the characteristics of fruit produced using these two farming systems is available in Korea. Therefore, weinvestigated fruit quality, total polyphenolic contents, and anti-oxidant activities in 'Niitaka' pears grown under sustainable and conventional farming management systems. Treatmentsincluded use of a chitin compost admixed with liquid chitin fertilizer (plot A), and use of a chitin compost admixed with liquid chitin fertilizer treated by infrared radiation (plot B). Plots C and D used conventional management systems. Fruit qualities at harvest differed between both sustainable plots A and B and the conventional plots C and D. The average values of firmness and total polyphenolic content in fruit harvested from sustainable plots were not significantly greaterthan those of fruit grownin conventional plots, after 60 days of storage. Fruit grown in all plots had low polyphenol oxidase (PPO) activity at harvest but this increased during storage. Fruit from sustainable plot B showed an increased electron donating ability compared with fruit grown using the other systems.

Effect of Nitrogen Fertilization Levels and its Split Application of Nitrogen on Growth Characters and Productivity in Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench]

  • Jung, Jeong Sung;Kim, Young-Jin;Kim, Won Ho;Lee, Sang-Hoon;Park, Hyung Soo;Choi, Ki Choon;Lee, Ki-Won;Hwang, Tae-Young;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • Nitrogen (N) fertilizer management is one of the important aspects of economic production of sorghums in sustainable agriculture. The aim of the study was to evaluate the effects of different N application rates and its split N application methods on productivity, growth characteristics, N accumulation, N use efficiency (NUE), and feed value of Sorghum ${\times}$ Sudangrass hybrids. Treatments consisted of five N application rates (0, 150, 200, 250, and $300kg\;ha^{-1}$) and two split N application methods (40% in basal N, 30% at the growing stage, and 30% after the first harvest vs. 50% in basal N and 50% after the first harvest). Plant height, leaf width, and stem diameter were increased ($p{\leq}0.05$) with increasing N fertility rates at each harvest. Chlorophyll content (expressed as SPAD values) was the highest at a rate of $300\;kg\;N\;ha^{-1)$ (first harvest, 46.32; second harvest, 33.09). It was the lowest at zero N (first harvest, 21.56; second harvest, 18.5). Total N, N uptake, and NUE were increased with higher N rates. Split N application had little effect on total N, amount of N uptake, or NUE. Total dry matter yields were the highest ($21,715\;kg\;ha^{-1}$) at a rate of $300\;kg\;N\;ha^{-1}$. It was the lowest ($10,054\;kg\;ha^{-1}$) at zero N. Our results suggest that more than $300\;kg\;N\;ha^{-1}$ can improve dry matter yield to be above 116% compared to zero N, thus enhancing the agronomic characters of sorghums. However, no significant effect had been found for split N application. Further work is needed to determine the optimal N levels and the effect of split N application rates.

Triboelectric Nanogenerator based on Mandarin Peel Powder (감귤 과피 분말 기반 마찰전기 나노발전기 제작)

  • Kim, Woo Joong;Kim, Soo Wan;Park, Sung Hyun;Doh, Yang Hoi;Yang, Young Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.