Browse > Article
http://dx.doi.org/10.14775/ksmpe.2022.21.05.009

Triboelectric Nanogenerator based on Mandarin Peel Powder  

Kim, Woo Joong (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology)
Kim, Soo Wan (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology)
Park, Sung Hyun (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology)
Doh, Yang Hoi (Department of Electronic Engineering, Jeju National University)
Yang, Young Jin (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society of Manufacturing Process Engineers / v.21, no.5, 2022 , pp. 9-15 More about this Journal
Abstract
Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.
Keywords
Bio-waste; Triboelectric Nanogenerator; Energy Harvest; Mandarin Peel Powder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, Y., He, K., Chen, G., Leow, W. R. and Chen, X. D., "Nature-Inspired Structural Materials for Flexible Electronic Devices", Chemical Reviews, Vol. 117, No. 20, pp. 12893-12941, 2017.   DOI
2 Fan, F. R., Tian, Z. Q. and Wang, Z. L., "Flexible Triboelectric Generator", Nano Energy, Vol. 1, No. 2, pp. 328-334, 2012.   DOI
3 Wang, Z. L. and Wu, W. Z., "Nanotechnology-Enabled Energy Harvesting for Self Powered Micro-/Nanosystems", Amgewandte Chemie, Vol. 51, No. 47, pp. 11700-11721, 2012.   DOI
4 Tian, J. W., Chen, X. Y. and Wang, Z. L., "Environmental Energy Harvesting based on Triboelectric Nanogenerators", Nanotechnology, Vol. 31, No. 24, pp. 242001, 2020.   DOI
5 Mao, Y. C., Zhang, N., Tang, Y. J., Wang, M., Chao, M. J. and Liang, E. J., "A Paper Triboelectric Nanogenerator for Self-powered Electronic Systems", Nanoscale, Vol. 9, No. 38, pp. 14499-14505, 2017.   DOI
6 Cao, X., Jie, Y., Wang, N. and Wang, Z. L., "Triboelectric Nanogenerators Driven Self- Powered Electrochemical Processes for Energy and Environmental Science", Advanced Energy Materials, Vol. 6, No. 23, pp. 1600665, 2016.   DOI
7 Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S. and Choi, Y. K., "Triboelectric Nanogenerator: Structure, Mechanism, and Applications", ACS Nano, Vol. 15, No. 1, pp. 258-287, 2021.   DOI
8 Zhou, Z. H., Li, X. S., Wu, Y. F., Zhang, H., Lin, Z. W., Meng, K. Y., Lin, Z. M., He, Q., Sun, C. C., Yang, J. and Wang, Z. L., "Wireless Self-Powered Sensor Networks Driven by Triboelectric Nanogenerator for In-situ Real Time Survey of Environmental Monitoring", Nano Energy, Vol. 53, pp. 501-507, 2018.   DOI
9 Zhang, Y. J., Zhou, Z. T., Sun, L., Liu, Z., Xia, X. X. and Tao, T. H., ""Genetically Engineered" Biofunctional Triboelectric Nanogenerators using Recombinant Spider Silk", Advanced Materials, Vol. 30, No. 50, pp. 1805722, 2018.   DOI
10 Luo, J. J., Wang, Z. M., Xu, L., Wang, A. C., Han, K., Jiang, T., Lai, Q. S., Bai, Y., Tang, W., Fan, F. R. and Wang, Z. L., "Flexible and Durable Wood-based Triboelectric Nanogenerators for Self-Powered Sensing in Athletic Big Data Analytics", Nature Communications, Vol. 10, No. 5147, 2019.
11 Shaukat, R. A., Saqib, Q. M., Khan, M. U., Chougale, M. Y. and Bae, J. H., "Bio-waste Sunflower Husks Powder based Recycled Triboelectric Nanogenerator for Energy Harvesting", Energy Reports, Vol. 7, pp. 724-731, 2021.   DOI
12 Gaur, A., Tiwari, S., Kumar, C. and Maiti, P., "Bio-waste Orange Peel and Polymer Hybrid for Efficient Energy Harvesting", Energy Reports, Vol. 6, pp. 490-496, 2020.
13 Zhang, R. Y., Dahlstrom, C., Zou, H. Y., Jonzon, J., Hummelgard, M., Ortegren, J., Blomquist, N., Yang, Y., Andersson, H., Martin, O., Norgren, M. Olin, H. and Wang, Z. L., "Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300Wm-2", Advanced Materials, Vol. 32, No. 38, pp. 2002824, 2020.   DOI
14 Rivas, B., Toizrado, A., Torre, P., Converti, A. and Dominguez, J. M., "Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate", Journal of Agricultural and Food Chemistry, Vol. 56, No. 7, pp. 2380-2387, 2008.   DOI
15 Vivekananthan, V., Chandrasekhar, A., Alluri, N. R., Purusothaman, Y., Khandelwal, G. and Kim, S. J., Triboelectric Nanogenerator: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications, Intechopen, pp. 1-3, 2020.
16 Zhang, R. and Olin, H., "Material Choices for Triboelectric Nanogenerators: A Critical Review", EcoMat, Vol. 2, No. 3, pp. 12062, 2020.
17 Lei, H., Xiao, J., Chen, Y. F., Jiang, J. W., Xu, R. J., Wen, Z., Dong, B. and Sun, X., "Bamboo-Inspired Self-Powered Triboelectric Sensor for Touch Sensing and Sitting Posture Monitoring", Nano Energy, Vol. 91, pp. 106670, 2022.   DOI
18 Saqib, Q. M., Shaukat, R. A., Khan, M. U., Chougale, M. and Bae, J. H., "Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies", ACS Applied Electronic Materials, Vol. 2, No. 12, pp. 3953-3963, 2020.   DOI