• Title/Summary/Keyword: sustainable energy

Search Result 1,177, Processing Time 0.025 seconds

A Study on the Sustainable Development of Pusan Metropolitan City by the EMERGY Evaluation (EMERGY 평가에 의한 부산광역시의 지속적인 발전가능성 평가)

  • Son, Ji-Ho;Lee, Suk-Mo
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.185-191
    • /
    • 2000
  • Sustainable development has been the key concept, both in economic policies and in environmental management since 1970s. In the view of systems ecology, sustainable resource use strategies are considered to be essential in achieving sustainable development. During the last three decades, the discipline of systems ecology has applied ecological energetic analysis to the evaluation of the contribution of natural environments to economic systems. ENERGY analysis of main energy flows driving the economy of humans and life support systems of a city was made including environmental energies, fuel, and inputs, all expressed as solar emjoules. Total EMERGY use of Pusan was 3.89 E22 sej/yr, about 90 percent of it was purchased sources from outside during eleven years from 1985 to 1995. EMERGY flows from the environment were less than 10 percent. EMERGY yield ratio and environmental loading ratio were 1.10 and 10.45, respectively. EMERGY sustainability index is there(ore less than one, which is indicative of highly developed consumer oriented economies. Development of a city has been achieved in the short run by the economic growth, but it can be sustained in the long run by the use of renewable resource systems.

  • PDF

Conceptual Principles of the Transformation of Industrial Parks into Eco-Industrial Ones in the Conditions of Sustainable Development

  • Shevchuk, Nataliia;Tulchynska, Svitlana;Severyn-Mrachkovska, Liudmyla;Pidlisna, Olena;Kryshtopa, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.349-355
    • /
    • 2021
  • The article investigates the conceptual principles of transformation of industrial parks into eco-industrial ones in the conditions of sustainable development. It is substantiated that the concept of sustainable development in the transformation of industrial parks is to grow industry and jobs, modernize production and introduce innovative technologies, resource and energy efficiency, reduce greenhouse gas emissions and waste storage, social protection of local communities and create favorable infrastructure. It is determined that for the transformation of industrial parks, it is necessary to improve regulatory changes, introduce criteria for compliance of industrial parks and the importance of their consideration, ensure park management by the management company and create favorable incentives for industrial entry into industrial symbiosis. It is proved that industrial parks can be an incentive for industrial development and competitiveness of enterprises. The availability of talented human capital, attractive territories, minerals, energy and mineral resources, developed domestic market, agricultural potential, transport networks is becoming an attractive place for investment and development. Industrial parks need investment. Transformation into eco-industrial parks through the implementation of sustainable development goals opens additional opportunities for access to investment funds and contributes to the implementation of growth and prosperity strategies of the country.

A Survey of Pre-service Elementary Teachers' Perceptions, Attitudes and Practical Intention toward Sustainable Development (초등 예비교사들의 지속가능 발전에 대한 인식, 태도 및 실천 의지에 대한 조사 연구)

  • Choi, Hyeh-Sook;Shim, Kew-Cheol;So, Keum-Hyun;Yeau, Sung-Hee
    • Hwankyungkyoyuk
    • /
    • v.23 no.2
    • /
    • pp.129-144
    • /
    • 2010
  • The purpose of this study was to examine the pre-service elementary teachers' perceptions and attitudes toward sustainable development. Subjects were 152 university students, who were surveyed by questionnaire. The instrument consisted of totally 41 items which were constructed by 3 components; 'the perception of concept of sustainable development', 'the attitude toward the relationship between economy and environment' and 'the practical intention of personal change for sustainable lifestyle'. The key findings suggest that most students associate strongly the concepts of sustainable development with their environmental as against economic and social aspect. Most of them incline toward eco-centrism but they had complex attitudes concerning the relationship between economy and environment. They have intention to act for sustainable lifestyle such as purchasing habits, recycling, energy water saving, forms of transportation, nature conservation and education. However, they prefer to act passively than actively in a certain aspect of sustainable lifestyle. Understanding of pre-service elementary teachers' perceptions of and attitudes toward sustainable development will be helpful to work out teaching and learning strategies in environmental education.

  • PDF

Production and Characterization of Ethanol- and Protease-Tolerant and Xylooligosaccharides-Producing Endoxylanase from Humicola sp. Ly01

  • Zhou, Junpei;Wu, Qian;Zhang, Rui;Yang, Yuying;Tang, Xianghua;Li, Junjun;Ding, Junmei;Dong, Yanyan;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% $KH_2PO_4$, and 0.5% peptone; initial pH 7.0; incubation time 72 h; $30^{\circ}C$; and 150 rpm. A considerable amount of the crude xylanase was induced using hulless barley bran or soybean meal as the carbon source, but a small amount of the enzyme was produced when supplementary urea was used as the nitrogen source to wheat bran. The crude xylanase showed apparent optimal cellulase-free xylanase activity at $60^{\circ}C$ and pH 6.0, more than 71.8% of the maximum xylanase activity in 3.0-30.0% (v/v) ethanol and more than 82.3% of the initial xylanase activity after incubation in 3.0-30.0% (v/v) ethanol at $30^{\circ}C$ for 2 h. The crude xylanase was moderately resistant to both acid and neutral protease digestion, and released 7.9 and 10.9 ${\mu}mol/ml$ reducing sugar from xylan in the simulated gastric and intestinal fluids, respectively. The xylooligosaccharides were the main products of the hydrolysis of xylan by the crude xylanase. These properties suggested the potential of the crude enzyme for being applied in the animal feed industry, xylooligosaccharides production, and high-alcohol conditions such as ethanol production and brewing.

Innovations for Sustainability: A Case of Mainstreaming Energy Access in Rural India

  • Patil, Balachandra
    • Asian Journal of Innovation and Policy
    • /
    • v.4 no.2
    • /
    • pp.154-177
    • /
    • 2015
  • India faces a formidable challenge in ensuring security of access to modern energy carriers to majority of its population. The fossil-fuel dominated centralized energy system has proved to be ineffective in creating sustainable access to energy, which suggests need for a radical and innovative approach. We present such an approach. First, the need for innovations given the implications of lack of energy access on sustainable development is assessed. Next, possible innovations with respect to technologies, policies, institutions, markets, financial instruments and business models are discussed. Finally, an economic and financial feasibility of implementing such innovations are analyzed. The results indicate that such a proposal needs an investment of US$ 26.2 billion over a period of 20 years for a GHG mitigation potential of 213Tg $CO_{2e}$. The proposition is profitable for the enterprises with IRRs in the range of 39%-66%. The households will get lifeline access to electricity and gas for cooking at an affordable monthly cost of about US$ 5.7.

A study on the application of Residential Polymer Electrolyte Membrane Fuel Cell (가정용 고분자 전해질 연료전지 시스템의 적용에 관한 연구)

  • Lee, Cheol-Ki;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.315-318
    • /
    • 2005
  • One of the problems in using renewable energy sources is great difficulty of stable and sustainable supply. Because the fuel cell can provide stable and sustainable supply of energy sources without regard to external conditions, however, it will become one of the most useful renewable energy sources for buildings that need stable energy supply. For practical application of PEMFC system to common household, the data of household energy consumption are analyzed by electricity, cooking and heating. From the result of the data analysis, practical application methods of PEMFC system to household are designed to several models. The aim of this study is to establish a plan of practical application for applying Polymer Electrolyte Membrane Fuel Cell(PEMFC) system to the households.

  • PDF

Testing the pollution haven hypothesis on the pathway of sustainable development: Accounting the role of nuclear energy consumption

  • Danish, Danish;Ud-Din Khan, Salah;Ahmad, Ashfaq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2746-2752
    • /
    • 2021
  • The environmental effects of China's nuclear energy consumption in a dynamic framework of the pollution haven hypothesis are examined. This study uses a dynamic autoregressive distributed lag simulation approach. Empirical evidence confirms that the pollution haven hypothesis does not exist for China; i.e., foreign direct investment plays a promising role in influencing environmental outcomes. Furthermore, empirical results concluded positive contribution of nuclear energy in pollution mitigation. From the results it is expected that encouraging foreign investment to increase generation of nuclear energy would benefit environmental quality by reducing CO2 emissions.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Development of Causal Map for Sustainable Transportation Facilities Using System Dynamics (시스템 다이내믹스를 이용한 지속가능한 교통시설 인과지도 개발)

  • Bae, Jin Hee;Park, Hee-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.953-959
    • /
    • 2015
  • The global warming caused by consumption of fossil fuel and energy has been interested. Therefore, several policies and regulations have been discussed to reduce greenhouse gas emission and effective energy consumption. The construction industry that takes 45% of energy consumption makes efforts to develop green construction methods and materials and reuseable energy. However, there is no common definition to calculate greenhouse gas and database in the construction industry. Especially, transportation infrastructure like road, railway, harbor, and airport consumes 21% energy of construction facilities. Therefore, this paper develops the causal relationship to define performance of sustainable road construction and maintenance. The performance indices are grouped into economic, social, and envirionmental impacts. Then, the causal map is developed based on survey results of construction experts. This will provide the baseline to evaluate the performance of sustainable construction and to establish the objective goals.

Triboelectric Nanogenerator based on Mandarin Peel Powder (감귤 과피 분말 기반 마찰전기 나노발전기 제작)

  • Kim, Woo Joong;Kim, Soo Wan;Park, Sung Hyun;Doh, Yang Hoi;Yang, Young Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.