• Title/Summary/Keyword: suspended material

Search Result 183, Processing Time 0.028 seconds

Development of the Environmentally Friendly Filling Material for the Underground Cavities using the Rock-dust and an Assessment on Filling and Material Characteristics (석분토를 이용한 지하공동의 친환경적 충전재 개발과 충전 및 재료특성 평가)

  • Ma Sang-Joon;Kim Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.35-44
    • /
    • 2005
  • Recently, underground cavities such as limestone cavity and abandoned mine give rise to a lot of damage in SOC facilities. But there are many difficult problems such as delay of the working terms and enormous economic losses in finding a new method and changing construction design. In this study, a new filling material for underground cavities was developed using the stone-dust classified as industry waste polluting environment. As a result of test, filling material properties was that a compressive strength was $34{\~}60\;kgf/cm^2$, a change ratio in length was $0.268{\~}0.776\%$ and water absorption was $34.3{\~}46.9\%$. Also as a result of suspended mass test and pH test, it was confirmed that the developed filling material has a characteristic of non-separating in water and it was an environmentally friendly material.

Statistical Analysis on the Quality of Surface Water in Jinhae Bay during Winter and Spring (동계와 춘계 진해만 표층수질에 대한 통계분석)

  • Kim, Dong-Seon;Choi, Hyun-Woo;Kim, Kyung-Hee;Jeong, Jin-Hyun;Baek, Seung-Ho;Kim, Yong-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.291-301
    • /
    • 2011
  • To investigate major factors controlling variations in water quality, principal component analysis and cluster analysis were used to analyze data sets of 12 parameters measured at 23 sampling stations of Jinhae Bay during winter and spring. Principal component analysis extracted three major factors controlling variations of water quality during winter and spring. In winter, major factors included freshwater input, polluted material input, and biological activity. Whereas in spring they were polluted material input, freshwater input, and suspended material input. The most distinct difference in the controlling factors between winter and spring was that the freshwater input was more important than the polluted material input in winter, but the polluted material input was more important than the freshwater input in spring. Cluster analysis grouped 23 sampling stations into four clusters in winter and five clusters in spring respectively. In winter, the four clusters were A (station 5), B (stations 1, 2), C (station 4), and D (the remaining stations). In spring, the five clusters included A (station 5), B (station 1), C (station 3), D (station 6), and E (the remaining stations). Intensive management of the water quality of Masan and Hangam bays could improve the water quality of Jinhae Bay since the polluted materials were mainly introduced into Jinhae Bay through Masan and Hangam bays.

Effect of Rotating Speed and Air Flow Rate on Material Removal Characteristics in Abrasive Fluidized Bed Machining of Polyacetal (폴리아세탈의 입자유동베드 가공에서 회전속도와 공기 유량이 재료제거 특성에 미치는 영향)

  • Jang, Yangjae;Kim, Taekyoung;Hwang, Heondeok;Seo, Joonyoung;Lee, Dasol;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.214-219
    • /
    • 2017
  • Abrasive fluidized bed machining (AFBM) is similar to general abrasive fluidized machining (AFM) in that it can perform polishing of the outer and inner surfaces of a 3-dimensional shape by the flow of particles. However, in the case of AFM, the shear force generated by the flow of the particles causes material removal, while in AFBM, the abrasive particles are suspended in the chamber to form a bed. AFBM can be used for deburring, polishing, edge contouring, shot peening, and cleaning of mechanical parts. Most studies on AFBM are limited to metals, and research on application of AFBM to plastic materials has not been performed yet. Therefore, in this study, we investigate the effect of rotating speed of the specimen and the air flow rate on the material removal characteristics during AFBM of polyacetal with a horizontal AFBM machine. The material removal rate (MRR) increases linearly with increase of the rotating speed of the main shaft because of the shear force between the particles of the fluidized bed and the rotation of the workpiece. The reduction in surface roughness tends to increase as the rotating speed of the main shaft increases. As the air flow rate increases, the MRR tends to decrease. At a flow rate of 70 L/min or more, the MRR remains almost constant. The reduction of the surface roughness of the specimen is found to decrease with increasing air flow rate.

Design fabrication and characteristics of 3C-SiC micro heaters for high temperature, high powers (고온, 고전압용 SiC 마이크로 히터 설계, 제작 및 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.113-113
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on $AlN(0.1{\mu}m)/3C-SiC(1.0{\mu}m)$ suspended membranes by surface micro- machining technology. The 3C-SiC and AlN thin films which have wide energy bandgap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3C-SiC RTD (resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR (thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 $ppm/^{\circ}C$ within a temperature range from $25^{\circ}C$ to $50^{\circ}C$ and -1040 $ppm/^{\circ}C$ at $500^{\circ}C$. The micro heater generates the heat about $500^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

  • PDF

Simplified Numerical Model of the Wind-driven Circulation with Emphasis on Distribution of the Tuman River Solid Run-off

  • Vanin, N.S.;Moshchenko, A.V.;Feldman, K.L.;Yurasov, G.I.
    • Ocean and Polar Research
    • /
    • v.22 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • Supposed construction of a large port in the mouth of Tuman River requires careful examination of possible unfavorable ecological consequences for the Far Eastern Federal Marine Reserve. Since the Tuman River is the largest source of suspended material and possible contaminants flowing into the sea, and in order to understand how this material is allocated in the coastal zone, analyses are needed to check possible pathways of water transport and circulation system in the region. Linearized shallow water equations were used for numerical simulation of the wind-driven circulation to the north off the Tuman River mouth. The model results satisfactorily agreed with in situ data. The model circulation patterns are largely dependent on the wind direction and are conformed by the distribution of bottom sediments, and by the location of organic carbon and some pollutants accumulation zones. The most unfavorable situation for the Marine Reserve is the case of the southwesterly wind; even with quite moderate wind, the waters polluted by the run-off from the Tuman River can attain the south section of the Marine Reserve during the diurnal period.

  • PDF

An Atomistic Modeling for Electromechanical Nanotube Memory Study (원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구)

  • Lee, Kang-Whan;Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.116-125
    • /
    • 2006
  • We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.

A free standing metal structures for MEMS switches (MEMS switch 응용을 위한 free standing 금속 구조물에 관한 연구)

  • Hwang, Hyun-Suk;Kim, Eung-Kwon;Kang, Hyun-Il;Lee, Kyu-Il;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.187-188
    • /
    • 2005
  • In this paper, big free standing metal structures for electrostatic MEMS switches are easily fabricated using photoresist sacrificial layer. The entire process sequence, through the removal of the sacrificial layer, is kept below 150 $^{\circ}C$ to avoid curing problem of photoresist sacrificial layer. Metal structure is fabricated by thermal evaporator and a self test electrode is fabricated underlying metal suspended structure for testing by electrostatic force. The new wet release process is considered using methanol rinse, general wet release process cause stiction problem by capillary force during drying, and the yield is dramatically improved than previous wet release process using DI water rinse. The fabrication becomes much simpler and cheaper with use of a photoresist sacrificial layer.

  • PDF

A study on New Treatment Chemical for Leather Wastewater; III. COD Efficiency of Inorganic Coagulant (새로운 피혁폐수 처리제에 관한 연구; III. 무기 응집제의 COD 효율)

  • Park, Jung-Hoi;Lee, Chul-Jae;Choi, Hyun-Kuk;Jung, Maeng-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.107-111
    • /
    • 2008
  • Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. Flocculation and coagulation by addition of chemical agents forms floc settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that COD efficiency for wastewater by using inorganic coagulant.

  • PDF

Thermal Conductivity Measurement of Grouting Materials for Geothermal Heat Exchanger (그라우트 재료에 따른 지중 열교환기의 열전도도에 관한 실험적 연구)

  • Lim Hyo Jae;Kong Hyoung Jin;Song Yoon Seok;Park Seong Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • An experimental study was conducted on the thermal conductivity of various grouting materials for geothermal heat exchanger which is used as a heat sink or source in the heat pump system. The grouting of the vertical heat exchanger is important for environmental and heat transfer reasons and is generally accomplished by the placement of a low permeability material into the annular space between the borehole wall and the pipes suspended in the borehole. In this study, a lab scale test apparatus was made and measured the thermal conductivity of four grouting materials. As a result, the temperature rising tendency was similar among them, but the increasing rate was different. Thus the thermal conductivity showed a maximum difference of $27\%$ among grouting materials.

STUDIES ON THE EXTRACELLULAR POLYSACCHARIDES PRODUCED BY ISOLATED DENTAL PLAQUE STREPTOCOCCI (Dental Plaque Streptococci가 생산하는 세포외 다당류에 관한 연구)

  • Chung, Tai-Young
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.819-822
    • /
    • 1971
  • For this investigation, author isolated Streptococcus mitis strain SD-9 from the bacterial flora in the human dental plaque, which was incubated in brain-heart infusion media containing 5% sucrose at 37℃ for 24 hours. For the cytochemical demonstration of polysaccharide produced by this strain, a modified thiosemicarbazide osmium method (Critchley et al., 1967) was used. After fixation with this reagent, the harvested cells was suspended in 1% agar for the higher concentration of cells(Kellenberger et al., 1964). And they were dehydrated in the various concentration of ethanol, and embedded in Epon 812(Luft, 1961). Sectioning was done with the Sorvall MT-2 Porter Blum ultramicrotome by means of a glass knife, and the sections were stained with saturated uranyl acetate and lead citrate (Raynolds, 1963). All preparations were examined in a electron microscope, Hitachi HU-ll E-1 type. The morphological features of extracellular polysaccharide produced by Streptococcus mitis strain SD-9 were appeared in 3 structurally different forms, those are, electron dense fibrillar material linearly arranged adjacent to the outer surface of cell wall, highly electron dense globular material adjacent to the outer surface of cell wall, and strutureless fluffy meshwork of possible very fine filament.

  • PDF