• Title/Summary/Keyword: survival signal

Search Result 222, Processing Time 0.024 seconds

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

LQI Standard Deviation Routing Algorithm for Energy Loss Reduction in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 손실 감소를 위한 LQI 표준편차 라우팅 알고리즘)

  • Shin, Hyun-Jun;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.960-967
    • /
    • 2012
  • Wireless sensor network is used at the environment to obtain nearby information and since such information is transferred through wireless link, it causes unnecessary re-sending and disadvantage of big energy consumption at node. Because of this to select reliable, energy effective link, method of estimating quality on wireless link using RSSI(received signal strength indication), LQI(link quality indication), etc is needed on wireless link. To set up path extending survival time by reducing energy consumption of nodes at the wireless sensor network, the thesis selects with small standard deviation of LQI after obtaining LQI within each path. Additionally, LQI standard deviation routing algorithm is compared based on LQI algorithm such as minimum-LQI, hop-LQI weight and RF output -7dBm. According to the outcome, the algorithm suggested has superior characters such as the number of node, retransmission rate and network life span respectively compared to existing algorithm. Therefore, energy consumption can be efficiently reduced in case that LQI standard deviation routing scheme suggested by this paper is adapted to wireless sensor network.

Expression of Vimentin Intermediate Filament for Vascular Development in Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Jang-Wook;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.18 no.2
    • /
    • pp.107-115
    • /
    • 2014
  • Cardiovascular system is the primary organ to develop and reach a functional state, which underscores the essential role of the vasculature in the developing embryo. The vasculature is a highly specialized organ that functions in a number of key physiological works including the carrying of oxygen and nutrients to tissues. It is closely involved in the formation of heart, and hence it is essential for survival during the hatching period. The expression of genes involved during vascular development in the olive flounder (Paralichthys olivaceus) in the days after hatching is not fully understood. Therefore, we examined the expression patterns of genes activated during the development of flounder. Microscopic observations showed that formation of blood vessels is related to the expression of the vimentin gene. Also, the temporal expression patterns of this vimentin-like gene in the developmental stages and in the normal tissues of olive flounder. The purpose of this study was to examine the expression patterns of vimentin in normal tissues of the olive flounder and during the development of the vascular system in newly hatched olive flounders and HIF-1 plays a vital role in the formation of blood vessels during development. Vimentin expression was strong at the beginning of the development of blood vessels, and was present throughout all developmental stages. Our findings have important implications with respect to the roles of vimentin and HIF-1 in the development and evolution of the first blood vessels in olive flounder. Further studies are required to elucidate the vimentin-mediated hypoxic response signal transduction and to decipher the functional role of vimentin in developmental stages.

Human Embryonic Stem Cells - a Potential Vaccine for Ovarian Cancer

  • Zhang, Zu-Juan;Chen, Xin-Hua;Chang, Xiao-Hong;Ye, Xue;Li, Yi;Cui, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4295-4300
    • /
    • 2012
  • Objective: To investigate the therapeutic potential of human embryonic stem cells (hESCs) as a vaccine to induce an immune response and provide antitumor protection in a rat model. Methods: Cross-reactivity of antigens between hESCs and tumour cells was screened by immunohistochemistry. Fischer 344 rats were divided into 7 groups, with 6 rats in each, immunized with: Group 1, hESC; Group 2, pre-inactivated mitotic NuTu-19; Group 3 PBS; Group 4, hESC; Group 5, pre-inactivated mitotic NuTu-19; Group 6, PBS; Group 7, hESC only. At 1 (Groups 1-3) or 4 weeks (Groups 4-6) after the last vaccination, each rat was challenged intraperitoneally with NuTu-19. Tumor growth and animal survival were closely monitored. Rats immunized with H9 and NuTu-19 were tested by Western blot analysis of rat orbital venous blood for cytokines produced by Th1 and Th2 cells. Results: hESCs presented tumour antigens, markers, and genes related to tumour growth, metastasis, and signal pathway interactions. The vaccine administered to rats in Group 1 led to significant antitumor responses and enhanced tumor rejection in rats with intraperitoneal inoculation of NuTu-19 cells compared to control groups. In contrast, rats in Group 4 did not display any elevation of antitumour responses. Western blot analysis found cross-reactivity among antibodies generated between H9 and NuTu-19. However, the cytokines did not show significant differences, and no side effects were detected. Conclusion: hESC-based vaccination is a promising modality for immunotherapy of ovarian cancer.

Antitumor Activity and Effect on Cell Proliferation and Differenciation of Exopolysaccharide Produced by Submerged Cultivation of Ganoderma lucidum (영지(Ganoderma lucidum)의 액체배양에 의한 세포외 다당의 항암활성과 세포증식 및 분화에 미치는 영향)

  • Lee, Shin-Young;Kang, Tae-Su;Moon, Soon-Ok
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.241-251
    • /
    • 2005
  • Exopolysaccharide (CBP) from submerged culture broth of Ganoderma lucidum mycelium and the water soluble (BWS) and water insoluble (BWI) fractions of CBP were prepared by gel filtration. Antitumor activity and effects on proliferation and differenciation of human cancer cells and mouse NIH 3T3 cells were studied. Cytotoxicity test of CBP, BWS and BWI fractions on human cancer cell lines was performed by using sulforhodamine B (SRB) assay. A549 (lung carcinoma), Colo320 DM and HSR (colon carcinoma), and NIH 3T3 cells were used. BWI fraction showed the strongest cytotoxicity (maximum 20% survival) to all human cells tested. However it did not induced apoptosis. Interestingly BWI fraction did not exert cytotoxic effect on NIH 3T3 cells at low concentration of cells ($5{\times}10^4$) but strong toxic effect at high concentration of cells($5{\times}10^5$) which showed transformed morphology. These results suggest that BWI may have cancer cell specific anticancer activity. However, BWI fraction did not effect the amount of pRb and c-myc protein, which implied that BWI fraction did not act at the early stage of signal transduction pathway. CBP fraction induced differenciation of human leukemic cell line, HL-60 cells suggesting the carcinogenesis prevention of normal cell and possible induction of normalization for cancer cell.

  • PDF

Expression and Activation of Akt/PKB Protein Kinase using Escherichia coli (대장균을 이용한 Akt/PKB Protein Kinase의 발현 및 활성화)

  • Lee, Jae-Hag
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • Among signal transduction systems by protein phosphorylation Akt/PKB protein kinase which is one of serine/threonine kinases, is known to regulate the survival and death of the cell and glucose metabolism. Thus, Akt/PKB protein kinase has been used as one of the target proteins to find anti-cancer agents from natural products. In this study, human Akt/PKB protein kinase was expressed in Escherichia coli expression system for the mass production. Human Akt/PKB protein kinase expressed in E. coli formed inclusion body under the general condition. However, most of the expressed protein was solubilized under the culture temperature at $27^{\circ}C$ and 0.01-0.09 mM of IPTG for induction of the protein expression. The expressed protein was purified using $Ni^{2+}$-NTA agarose column and confirmed by using anti-Akt antibody. Subsequently, the purified human Akt/PKB protein kinase was activated by in vitro phosphorylation using cellular extract containing kinases. The activated protein was confirmed to phosphorylate the specific fluorescent peptide specially designed as the artificial substrate for Akt/PKB protein kinase.

Somatic Mutations of the ENPP2 (Autotaxin/lysoPLD) Gene in Breast Cancer

  • Song, Jae-Hwi;Kim, Jeong-Kyu;Noh, Ji-Heon;Jung, Kwang-Hwa;Eun, Jung-Woo;Kim, Chang-Jae;Bae, Hyun-Jin;Xie, Hong-Jian;Ahn, Young-Min;Lee, Sug-Hyung;Yoo, Nam-Jin;Lee, Jung-Young;Park, Won-Sang;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.262-266
    • /
    • 2007
  • ENPP2, a 125 kDa secreted lysophopholipase D which originally identified as a tumor-motogen, Autotaxin, enhances cellular locomotion, cell proliferation, angiogenesis and cell survival by generating the signal molecule lysophosphatic acid or sphingosine-1-phosphate. Previous studies have suggested that expression of Autotaxin is associated with invasive phenotype in advanced breast carcinomas. Thus, to determine whether genetic alterations of ENPP2 gene are involved in the development or progression of breast cancer, we analyzed its somatic mutation in 85 breast carcinomas by single-stranded conformational polymorphism and sequencing. Overall, six ENPP2 mutations were found (7.0%), comprising five missense and one nonsense mutation (s). To our knowledge, this is the first report on ENPP2 mutation in breast carcinoma, and the data indicate that ENPP2 is occasionally mutated in breast carcinomas, and suggest that ENPP2 mutation may contribute to the tumor development in some breast carcinomas.

Effects on Inhibition of Angiogenesis in MCF-7 Cells by the Aqueous Root Extract of Ailanthus Altissima (저근백피 추출물이 유선암 세포에서의 신생혈관 미치는 영향)

  • Jeong Ji Hak;Yun Young Gab;Jeon Byung Hun;Park Hae Ryoun;An Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1613-1616
    • /
    • 2004
  • The cellular response to hypoxia is controlled to a large degree by the transcription factor Hypoxia-inducible factor-1(HIF-1). HIF-1 is a transcription factor that is activated by hypoxia and plays a critical role in the development of the cancer phenotype. HIF-1 regulates transcription of a number of genes crucial for tumor survival under hypoxic conditions, including vascular endothelial growth factor(VEGF), erythropoietin(Epo) and several glycolytic enzymes. Tumors in which hypoxia can not induce HIF-1 transcriptional activity remain small and fail to metastasize. In this study, we examined whether aqueous root extract of Ailanthus altissima (REA) downregulate HIF-1, VEGF and p53, and raise the possibility that depletion of these proteins and the anti proliferative activities of REA have any effects on inhibition of angiogenesis in MCF-7 cells. Pharmacologic targeting of specific signal transduction pathways related to oncogenic transformation is a promising approach in cancer treatment. Therefore, REA could be a candidate drug for further clinical development.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF