Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
Asian Pacific Journal of Cancer Prevention
/
v.15
no.14
/
pp.5571-5575
/
2014
Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.
Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Rana, Sagar;Ahmed, Nasar Uddin
Asian Pacific Journal of Cancer Prevention
/
v.15
no.2
/
pp.663-669
/
2014
Background: With recent progress in health science administration, a huge amount of data has been collected from thousands of subjects. Statistical and computational techniques are very necessary to understand such data and to make valid scientific conclusions. The purpose of this paper was to develop a statistical probability model and to predict future survival times for male breast cancer patients who were diagnosed in the USA during 1973-2009. Materials and Methods: A random sample of 500 male patients was selected from the Surveillance Epidemiology and End Results (SEER) database. The survival times for the male patients were used to derive the statistical probability model. To measure the goodness of fit tests, the model building criterions: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were employed. A novel Bayesian method was used to derive the posterior density function for the parameters and the predictive inference for future survival times from the exponentiated Weibull model, assuming that the observed breast cancer survival data follow such type of model. The Markov chain Monte Carlo method was used to determine the inference for the parameters. Results: The summary results of certain demographic and socio-economic variables are reported. It was found that the exponentiated Weibull model fits the male survival data. Statistical inferences of the posterior parameters are presented. Mean predictive survival times, 95% predictive intervals, predictive skewness and kurtosis were obtained. Conclusions: The findings will hopefully be useful in treatment planning, healthcare resource allocation, and may motivate future research on breast cancer related survival issues.
Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Rana, Sagar;Ahmed, Nasar Uddin
Asian Pacific Journal of Cancer Prevention
/
v.15
no.6
/
pp.2893-2900
/
2014
Background: Statistical methods are very important to precisely measure breast cancer patient survival times for healthcare management. Previous studies considered basic statistics to measure survival times without incorporating statistical modeling strategies. The objective of this study was to develop a data-based statistical probability model from the female breast cancer patients' survival times by using the Bayesian approach to predict future inferences of survival times. Materials and Methods: A random sample of 500 female patients was selected from the Surveillance Epidemiology and End Results cancer registry database. For goodness of fit, the standard model building criteria were used. The Bayesian approach is used to obtain the predictive survival times from the data-based Exponentiated Exponential Model. Markov Chain Monte Carlo method was used to obtain the summary results for predictive inference. Results: The highest number of female breast cancer patients was found in California and the lowest in New Mexico. The majority of them were married. The mean (SD) age at diagnosis (in years) was 60.92 (14.92). The mean (SD) survival time (in months) for female patients was 90.33 (83.10). The Exponentiated Exponential Model found better fits for the female survival times compared to the Exponentiated Weibull Model. The Bayesian method is used to obtain predictive inference for future survival times. Conclusions: The findings with the proposed modeling strategy will assist healthcare researchers and providers to precisely predict future survival estimates as the recent growing challenges of analyzing healthcare data have created new demand for model-based survival estimates. The application of Bayesian will produce precise estimates of future survival times.
Communications for Statistical Applications and Methods
/
v.31
no.1
/
pp.155-178
/
2024
Regression discontinuity (RD) design is one of the most widely used methods in causal inference for estimation of treatment effect when the treatment is created by a cutpoint from the covariate of interest. There has been little attention to RD design, although it provides a very useful tool for analysis of treatment effect for censored data. In this paper, we define the causal effect for survival function in RD design when the treatment is assigned deterministically by the covariate of interest. We propose estimators of this causal effect for survival data by using transformation, which leads unbiased estimator of the survival function with local linear regression. Simulation studies show the validity of our approach. We also illustrate our proposed method using the prostate, lung, colorectal and ovarian (PLCO) dataset.
Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
Asian Pacific Journal of Cancer Prevention
/
v.15
no.9
/
pp.4049-4054
/
2014
Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.
This paper proposes a method of modelling the informative dropouts with QoL(quality of life) in survival analysis. QoL is the index to measure the health related quality of life of a patient who got some treatments for a disease. Dropouts are prevalent occurrences on longitudinal study They are commonly dependent to the QoL of patients, that is, severe disease or death and called informative dropouts. Modelling the mechanism of dropouts could achieve the more accurate inference for survival analysis. A likelihood method is proposed to estimate the survival parameter and test the patterns of dropouts.
Communications for Statistical Applications and Methods
/
v.5
no.1
/
pp.239-263
/
1998
In this paper, we consider a multistate survival model which incorporates covariates and contains two illness states and two death states. The underlying stochastic process is assumed to follow nonhomogeneous Markov process. The estimates of survival, transition and competing risks probabilities are given via the methods of partial likelihood and nonparametric maximum likelihood. Our discussion is based on the statistical theory of counting process. An illustration is given to the data of patients in a heart transplant program. The goodness of fit procedures are also discussed to check the adequacy of the model.
Communications for Statistical Applications and Methods
/
v.9
no.3
/
pp.825-834
/
2002
Poisson processes are widely used in reliability and survival analysis. In particular, multiple event time data in survival analysis are routinely analyzed by use of Poisson processes. In this paper, we consider large sample properties of nonparametric Bayesian models for Poisson processes. We prove that the posterior distribution of the cumulative intensity function of Poisson processes is consistent under regularity conditions on priors which are Levy processes.
Communications for Statistical Applications and Methods
/
v.28
no.5
/
pp.411-424
/
2021
Inference following two-stage adaptive designs (also known as two-stage randomization designs) with survival endpoints usually focuses on estimating and comparing survival distributions for the different treatment strategies. The aim is to identify the treatment strategy(ies) that leads to better survival of the patients. The objectives of this study were to assess the performance three commonly cited methods for estimating survival distributions in two-stage randomization designs. We review three non-parametric methods for estimating survival distributions in two-stage adaptive designs and compare their performance using simulation studies. The simulation studies show that the method based on the marginal mean model is badly affected by high censoring rates and response rate. The other two methods which are natural extensions of the Nelson-Aalen estimator and the Kaplan-Meier estimator have similar performance. These two methods yield survival estimates which have less bias and more precise than the marginal mean model even in cases of small sample sizes. The weighted versions of the Nelson-Aalen and the Kaplan-Meier estimators are less affected by high censoring rates and low response rates. The bias of the method based on the marginal mean model increases rapidly with increase in censoring rate compared to the other two methods. We apply the three methods to a leukemia clinical trial dataset and also compare the results.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.193-200
/
2000
Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.