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Abstract
Regression discontinuity (RD) design is one of the most widely used methods in causal inference for es-

timation of treatment effect when the treatment is created by a cutpoint from the covariate of interest. There
has been little attention to RD design, although it provides a very useful tool for analysis of treatment effect for
censored data. In this paper, we define the causal effect for survival function in RD design when the treatment
is assigned deterministically by the covariate of interest. We propose estimators of this causal effect for survival
data by using transformation, which leads unbiased estimator of the survival function with local linear regression.
Simulation studies show the validity of our approach. We also illustrate our proposed method using the prostate,
lung, colorectal and ovarian (PLCO) dataset.

Keywords: survival analysis, causal inference, local linear regression, regression discontinuity,
doubly robust

1. Introduction

Regression discontinuity (RD) design is one of the most widely used methods in causal inference
for the estimation of treatment effect by creating discontinuity with a covariate of interest. In this
design, the treatment assignment is decided by covariate of interest deterministically or probabilisti-
cally, a so-called running variable with a pre-determined threshold. When the treatment assignment is
a determinis- tic function of running variable, it is called sharp RD design. If the treatment assignment
is a function of running variable with randomness, it is called fuzzy RD design. Due to its character-
istic, in sharp RD, the treatment assignment is random in the threshold of running variable. In other
words, in this sharp RD, although our study is an observational study, we have the same environment
as ran- domized assignment of treatment in the threshold of running variable. This property enables
us to avoid unmeasured confounders assumption, which is a fundamental one in causal inference but
may be unreasonable in practice.

The RD design was first proposed by Thistlethwaite and Campbell (1960), and it has received
much attention in social science and economics. For example, Ludwig and Miller (2007) study the
effect of funding in education. Lee (2008) uses RD design to study the effect of party affiliation
probability of Democrats winning in the next election. For theoretical work, Hahn et al. (1999) and
Hahn et al. (2001) prove nonparametric identification of treatment effect and asymptotic results of
the estimator of the treatment effect on RD design. To estimate the treatment effect, they use local
linear regression. This local linear or polynomial regression is a widely used method on the RD design
because they effectively handle discontinuity and are theoretically well supported.
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Since choosing bandwidth in the local regression is a crucial issue, many researchers have pro-
posed several methods. Ludwig and Miller (2007) propose method for choosing bandwidth from the
local linear regression by cross-validation. Imbens and Kalyanaraman (2012) propose choosing band-
width by optimizing mean squared error. Recently, Calonico et al. (2014) propose method which
corrects bias from local regression and provides robust confidence interval. Calonico et al. (2020)
propose bandwidth choice to achieve smaller coverage rate than one in optimizing mean squared
error.

However, the aforementioned works are focused on uncensored data. The RD design in the cen-
sored data can provide a useful answer to the clinician’s research question. As discussed by Shoag
et al. (2015) and Cho et al. (2021), in prostate cancer research, the usefulness of patient screening
based on prostate-specific antigen (PSA) for survival or prostate-cancer specific incidence is still an
open question. In this setup, the outcome of interest is time to death or prostate cancer incidence, and
it is subject to censoring, i.e., patients may not experience death or prostate cancer on their observed
time. In practice, a patient is considered high risk if his PSA level is greater than or equal to 4.0mg/nl.
People in the screening group with a PSA of 4.0 ng/ml at any time were suggested to receive further
checkup and biopsy. This is a clearly sharp RD setting: Shoag et al. (2015) use RD design with a bi-
nary outcome to answer this question using prostate, lung, colorectal, and ovarian (PLCO) data with
prostate cancer. The objective of this PLCO trial is to investigate whether screenings for prostate,
lung, colorectal, ovarian cancers are effective to reduce mortality. It is a multi-center, two-armed,
and randomized trial (Prorok et al., 2000). Men and women people with age between 55 to 74 were
enrolled at 10 centers in the United States from 1993 to 2001. Patients with prostate cancer in the
screening group received PSA testing for 6 years and digital rectal examination for 4 years annually
(Andriole et al., 2009).

There is little research on using RD design in censored data. Recently, Bor et al. (2014) and
Moscoe et al. (2015) use RD design to answer a research question on the effect of early versus
late treatment initiation for the survival of HIV patients. Cho et al. (2021) extend Steingrimsson
et al. (2019) to RD design and employ local linear regression by Fan and Gijbels (1996) to estimate
treatment effects under RD design. They focus on survival time and analyze the aforementioned PLCO
data. However, there is no research to discuss modeling survival probability, an essential quantity in
the censored data, in the RD design. Moreover, our proposed method allows different treatment effects
at each time point, opposite to Cho et al. (2021)’s method.

In this paper, we discuss modeling survival probability in the RD design. Our approach employs
the approach of Steingrimsson et al. (2019) and Cho et al. (2021). Our method enjoys doubly
robustness, as Steingrimsson et al. (2019) and Cho et al. (2021). Moreover, we also investigate the
application of the pseudo-value approach (Anderson et al., 2003) to RD design, which provides an
unbiased estimator of the survival function.

The paper is organized as follows. In the next section, we discuss the estimation of treatment
effect with regard to survival probability in the RD design for uncensored and censored data. We
propose asymptotic theory and statistical inference for the proposed method, and the extension with
the pseudo-value approach from Anderson et al. (2003) in Section 3. We demonstrate simulation
studies with various settings in Section 4. Real data analysis is shown in Section 5. Conclusion and
future research are discussed in Section 6.
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2. Regression discontinuity with regards to survival probability

From framework of Rubin (1974), we define the potential outcome for survival data. Let T (1) and
T (0) be the potential time to the event of treatment group and control group, respectively. Let W be a
running variable. In the RD design, there are two designs: Sharp and fuzzy design. In this paper, we
only discuss the sharp design case. In the sharp design, the treatment is assigned deterministically by
the threshold. Let w0 be threshold on W. Our treatment variable Z is defined by

Z = I(W ≥ w0).

We are interested in the average treatment effect (ATE) with respect to survival function.

ATE = P
(
T (1) > t

)
− P

(
T (0) > t

)
.

From potential outcome structure, our observable outcome is T = ZT (1) + (1 − Z)T (0). From the
structure of the sharp RD, the ATE can be expressed by the difference of survival functions in the
neighborhood of w0. In the neighborhood of w0, the limits of two survival functions above and below
w0 are equal to P(T (1) > t) and P(T (0) > t) with difference of treatment status and their actual survival
functions P(T > t) (Zajonc, 2012). To identify the causal effect, the assumptions similar to Cho et al.
(2021) are required.

C.1 Participants do not have perfect manipulation on the cutoff.

C.2 P(T (1) > t|W = w) and P(T (0) > t|W = w) are continuous on W = w0 for all t.

Condition C.1 is required to create a “randomized environment” in the cutoff. Condition C.2 shows
that the potential survival function for treatment and control given W is smooth under W = w0. With
these conditions, we can identify the average causal effect of the survival function

τ(t) = P
(
T (1) > t | W = w0

)
− P

(
T (0) > t | W = w0

)
= lim

w↓w0
P

(
T (1) > t | W = w

)
− lim

w↑w0
P

(
T (0) > t | W = w

)
= lim

w↓w0
P

(
T (1) > t | W = w,Z = 1

)
− lim

w↑w0
P

(
T (0) > t | W = w,Z = 0

)
= lim

w↓w0
P (T > t | W = w) − lim

w↑w0
P (T > t | W = w)

= lim
w↓w0

E{I (T > t | W = w)} − lim
w↑w0

E{I (T > t | W = w)}.

The full data is (Ti,Wi,Zi)n
i=1, the i.i.d copies of (T,W,Z). As Hahn et al. (1999) point out, boundary

observations leads poor numerical results for computing estimator and perform inference. To address
this issue, local linear regression method (Fan and Gijbels, 1996) is widely used in RD design. We
apply the Brier score (Brier, 1950), a squared error loss for probability to local linear regression. Let
V(t) = I(T > t), K(·) be kernel function and h be bandwidth. Define {αR(t), βR(t)} and {αL(t), βL(t)}
as regression parameters correponding to local linear regression of right and left limits. Then the
proposed loss functions are

UR(αR(t), βR(t)) =

n∑
i=1

I(Wi ≥ w0) {Vi(t) − αR(t) − βR(t)(Wi − w0)}2 K
(Wi − w0

h

)
,

UL(αL(t), βL(t)) =

n∑
i=1

I(Wi < w0) {Vi(t) − αL(t) − βL(t)(Wi − w0)}2 K
(Wi − w0

h

)
,
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where Vi(t) = I(Ti > t). Then by minimization of UR and UL, we obtain {α̂R(t), β̂R(t), α̂L(t), β̂L(t)}.
Then the corresponding estimator for SRD is

τ̂(t) = α̂R(t) − α̂L(t).

For this approach, we can use standard methods of RD methodology proposed by the aforementioned
literatures. Our outcome is I(T > t), and we apply local linear regression.

Now we introduce censoring in our data. Let C be time to the censoring and a ∧ b be minimum a
and b where a, b ∈ R. The observed data is i.i.d (T̃i,∆i,Wi,Zi) where T̃i = Ti∧Ci and ∆i = I(Ti ≤ Ci).
For censored data case, it is very difficult to use response directly because P(T̃ > t) , P(T > t).
By adapting idea from Cho et al. (2021), our goal is to find time-dependent transformation qt such
that E{qt(T |W)} = E(I(T > t)|W) = P(T > t|W). The transformation qt is also censoring unbiased
transformation (Fan and Gijbels, 1994; Rubin and van der Laan, 2007; Cho et al., 2021). The widely
used function qt is inverse probability censoring weighted (IPCW) method.

E
[
∆ · I(T > t)
G(T | W)

]
=

[P(C ≥ T | W)
G(T | W)

]
E{I(T > t | X)} = P(T > t | W). (2.1)

Hence we obtain unbiased estimator of P(T > t|W). The transformation (2.1) is

VIPCW1 (t) =
∆V(t)

G(T | W)
. (2.2)

However, this approach only uses data with uncensored observation (i.e., ∆ = 1). To use more infor-
mation than VIPCW1 (t), Gref et al. (1999) and Lostritto et al. (2012) use truncation on T and ∆. We
consider T (t) = T ∧ t, T̃ (t) = T (t) ∧ C and ∆(t) = I(T (t) ≤ C). Throughout the truncation, ∆ = 1
implies ∆(t) = 1, but ∆ = 0 may lead ∆(t) = 1. From the idea of Gref et al. (1999) and Lostritto et al.
(2012), we propose

VIPCW2 (t) =
∆(t)V(t)

G(T (t) | W)
. (2.3)

Due to the aforementioned reasoning, VIPCW2 (t) has smaller variance than VIPCW1 (t) because it uses
more information than VIPCW1 (t). These approaches are easy to implement and supported by asymp-
totic theory (e.g., Strawderman, 2000). For example, VIPCW2 (t) is uniform consistent with regard to
mean square error (Gerds and Schumacher, 2006) and has good performance compared to VIPCW1 (t)
(Cho et al., 2022).

However, these approaches require that censoring distribution is correct and these approaches
yield inefficient estimators because we only use ∆ = 1 or ∆(t) = 1. Motivated by semiparametric
efficiency theory (Robins et al., 1994; Tsiatis, 2007), we obtain transformation

VDR(t) =
∆V(t)

G(T | W)
+

∫ t

0

Q(t, u | W)
G(u | W)

dMG(u | W)

=
∆(t)V(t)

G(T (t) | W)
+

∫ T̃ (t)

0

Q(t, u | W)
G(u | W)

dMG(u | W), (2.4)

where λG(s|W) is the true hazard function of G given W and

MG(u | W) = I
(
T̃ ≤ u,∆ = 0

)
−

∫ u

0
I
(
T̃ ≥ s

)
λG(s | W)ds

Q(t, u | W) =
P(T ≥ t | W)
P(T ≥ u | W)

, t ≥ u.
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The equality of last two terms in (2.4) is proved in Cho et al. (2020). Note that Q involves the
modeling survival function. The (2.4) is doubly robust because it is required to be either model for G(·)
or survival model correct, but not necessarily both. It guarantees that E(VDR(t)|W = w) = P(T > t|W =

w) for any given w, so it is censoring unbiased transformation. This doubly robust transformation is
a combination of the IPCW term and the mean zero martingale transformation term. This martingale
transformation term utilizes censored data, which yields more efficiency than VIPCW1 (t) and VIPCW2 (t),
but it has fairly similar performance or slightly better efficiency than VIPCW2 (t) (Cho et al., 2022).

3. Proposed method

3.1. Causal effect estimation and inference with IPCW and DR estimators

Let V̂IPCW1,i(t), V̂IPCW2,i(t) and V̂DR,i(t) be the transformed response for ith observation using (2.2), (2.3)
and (2.4). Denote Ni,G(u) = I(T̃i ≤ u,∆i = 0). Then we can express V̂IPCW1,i(t), V̂IPCW2,i(t) and V̂DR,i(t)
by

V̂IPCW1,i(t) =
∆iI

(
T̃i ≥ t

)
Ĝ

(
T̃i

) ,

V̂IPCW2,i(t) =
∆i(t)I

(
T̃i ≥ t

)
Ĝ

(
T̃i(t)

) ,

V̂DR,i(t) =
∆i(t)I

(
T̃i ≥ t

)
Ĝ

(
T̃i(t)

) +

∫ T̃i(t)

0

Q̂(t, u | Wi)
Ĝ(u)

dM̂i,G(u),

where

Mi,G(u) = Ni,G(u) −
∫ u

0
I
(
T̃i ≥ s

)
dΛ̂G(s)ds,

and Λ̂G(s) is the estimated cumulative hazard function with respect to C, and Q̂(t, u|Wi) is the estimator
of Q(t, u|Wi). For the calculation of Ĝ, due to the random censoring assumption, we use the Kaplan-
Meier estimator. Hence we compute Λ̂G by Nelson-Aalen estimator with respect to C. We use various
survival models for Q̂ such as the Cox model (Cox, 1972) and the parametric accelerated failure time
(AFT) model.

After the calculation of V̂IPCW1,i(t), V̂IPCW2,i(t) or V̂DR,i(t), we use a local linear apporach from Fan
and Gijbels (1996) on transformed response as Cho et al. (2021). Let V̂CUT,i be one of V̂IPCW1,i(t),
V̂IPCW2,i(t) or V̂DR,i(t) and K(·) be a kernel function and h be bandwidth. Suppose that the h is given.
We will explain bandwidth estimation in the next section. As Imbens and Lemieux (2008), we build
two loss functions

UR

(
αR(t), βR(t); Ĝ, Ŝ

)
=

n∑
i=1

I (Wi ≥ w0)
{
V̂CUT,i(t) − αR(t) − βR(t) (Wi − w0)

}2
K
(Wi − w0

h

)
(3.1)

UL

(
αL(t), βL(t); Ĝ, Ŝ

)
=

n∑
i=1

I (Wi < w0)
{
V̂CUT,i(t) − αL(t) − βL(t)(Wi − w0)

}2
K
(Wi − w0

h

)
. (3.2)

Then we calculate {αR(t), βR(t), αL(t), βL(t)}which minimize {UR(αR(t), βR(t); Ĝ, Ŝ ),UL(αL(t), βL(t); Ĝ,
Ŝ )} by weighted least squares. Let α̂R,DR(t), β̂R,DR(t), α̂L,DR(t), β̂L,DR(t) be minimizer of (3.1) with
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V̂CUT,i(t) = V̂DR,i(t). We can similarly define{
α̂R,IPCW1 (t), β̂R,IPCW1 (t), α̂L,IPCW1 (t), β̂L,IPCW1 (t)

}{
α̂R,IPCW2 (t), β̂R,IPCW2 (t), α̂L,IPCW2 (t), β̂L,IPCW2 (t)

}
.

In this case, for simplicity, we suppress notations Ĝ and Ŝ . Then our sharp RD estimator is obtained
by

τ̂IPCW1 (t) = α̂R,IPCW1 (t) − α̂L,IPCW1 (t),
τ̂IPCW2 (t) = α̂R,IPCW2 (t) − α̂L,IPCW2 (t),
τ̂DR(t) = α̂R,DR(t) − α̂L,DR(t).

We adapt the method from Cho et al. (2021) for survival functions. Our V̂CUT,i is the new response for
the regression and we adapt the idea of the Brier score for estimation. When Q̂ = 0, V̂DR,i(t) reduces
either V̂ICPW1,i(t) or V̂ICPW2,i(t). Furthermore, when there is no censoring, V̂ICPW1,i(t) and V̂ICPW2,i

reduce to Vi(t). This is an advantage of our method: Our method is not only restricted to uncensored
data but also can be applied to censored data. Our method bridges between censored and uncensored
data, which does not happen in the typical survival analysis modeling.

Our approach is different from Cho et al. (2021) in several ways. First, Cho et al. (2021) use
log T to estimate causal effects. This estimation is useful, but interpretation with logarithm may be
practically not easy. We express causal effects in terms of survival function, and it is more relevant in
practice. Moreover, since our causal effect depends on time t, we allow different causal effect in each
time, while Cho et al. (2021)’s method does not allow it. Hence our approach is more flexible than
Cho et al. (2021)’s method.

Remark. We observe the same phenomenon in Cho et al. (2021); in their paper, when E(log(T )|T
≥ u,W) is 0, their DR-transformed outcome reduces to an IPCW-transformed outcome, and when
additionally no censoring exists, the IPCW-transformed outcome reduces to the usual continuous
outcome.

Due to the nature of our estimation procedure, we can adapt the result of asymptotic results from
the mean of the logarithm of survival time in Cho et al. (2021). We show that our estimators are
asymptotically normal in Appendix A (see Theorem 1 and proof in the Appendix A.).

Now we discuss the estimation of bandwidth for τ̂(t). First, we apply the method from Ludwig
and Miller (2007), which is also used in Cho et al. (2021). The criterion proposed by Ludwig and
Miller (2007) uses empirical distributions Wi with Wi < w0 and Wi with Wi ≥ w0. Then with values
of Wi from these empirical distributions, we compute squared error from transformed response and
corresponding our DR estimator with some range of W.

This method is simple and does not depend on the variance of the transformed response. First,
define âL(ξ) to be the ξ quantile of the empirical distribution of W using observations Wi < w0 and let
âR(1 − ξ) be the 1 − ξ quantile of the empirical distribution of W using observations Wi ≥ w0. Then
we compute the following quantity:

CVDR,LM

(
h; Ĝ, Ŝ

)
=

1
n

∑
âL(ξ)≤Wi≤âR(1−ξ)

(
V̂DR,i(t) − γ̂DR (h, t; Wi)

)2
, (3.3)

where

γ̂DR(h, t | w) =

 α̂L,DR(h, t; w), if w < w0,

α̂R,DR(h, t; w), if w ≥ w0.
(3.4)
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In other words, for given h, we first compute the estimator of α̂L,DR(t) and α̂R,DR(t) with some truncated
range of Wi, and secondly calculate the average of squared error with regards to α̂L,DR(h, t; w) and
α̂R,DR(h, t; w), respectively. We then choose

ĥDR

(
t, Ĝ, Ŝ

)
= argmin

h
CVDR,LM

(
h, t; Ĝ, Ŝ

)
.

We can derive a similar quantity for VIPCW1,i(Ĝ),VIPCW2,i(Ĝ), i = 1, . . . , n. The second quantity is the
mean squared error criterion for the RD estimator by Imbens and Kalyanaraman (2012). Since local
linear (or polynomial) regression gives a bias to the estimator, it is desirable to select bandwidth that
minimizes the mean squared error. In this case, the target quantity is the mean squared error of the
sharp RD estimator. In the uncensored data, for sharp RD estimator τ̂h, which is τ̂ with given h and
true value τ0, we want to find h to minimize

E
{
(τ̂h − τ0)2

}
. (3.5)

Imbens and Kalyanaraman (2012) provide asymptotic results for the expansion of (3.5). With uncen-
sored data, let Y be an outcome, σ2

+(w0) and σ2
−(w0) be the right and left limits of Var(Y |W = w) on the

threshold w0 and m(2)
+ and m(2)

− be the right and left hand limits of the second derivative of E(Y |W = w)
on threshold w0. They propose the bandwidth selection approach by

hMS E,IK = CK

 σ2
+(w0) + σ2

−(w0)

g(w0)
(
m(2)

+ (w0) − m(2)
− (w0)

)2

 n−
1
5 ,

where CK is constant from the function of kernel function and g is the density function of W. This
approach provides an estimator whose the mean square error is asymptotically optimal and it is widely
used in the practice (Calonico et al., 2020). However, this method requires estimation of g, σ2

+ and
σ2
−, which is not preferred. Calonico et al. (2014) provide an alternative expansion of (3.5)

E {τ̂h − τ0}
2 = h4

(
B2 + op(1)

)
+

1
nh

(
V + op(1)

)
, (3.6)

where V and B is variance and bias of τ̂h. They suggest that optimal bandwidth based on the mean
square error in (3.6) by

hMS E,C =

(
V

4B2

) 1
5

n−
1
5 . (3.7)

Then we can compute this hMS E,C by following steps:

Step 1: Take initial bandwidths to compute B andV. For this, one can use Silverman’s rule of thumb
(Silverman, 1986).

Step 2: By using (3.6) and (3.7), compute the final bandwidth hMS E,C .

We use IPCW and DR estimators in the place of τ̂h and compute hMS E,C , and use them in the inference.

Now we want to perform inference for the proposed sharp RD estimators. To compute variance,
we adapt the approaches of Cho et al. (2021). We only propose the method based on DR transfor-
mation; the derivation of IPCW1 and IPCW2 are similar. Suppose that h is computed by Ludwig and
Miller (2007) or the mean square error criterion by Calonico et al. (2014).
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Table 1: Simulation results with data generated from Cox model with 30% censoring rate

Bias ESD SE Cover

LM MSE LM MSE LM MSE LM MSE
NN HC0 NN HC0 NN HC0 NN HC0

n = 500

t1

IPCW1 0.001 −0.004 0.181 0.334 0.173 0.171 0.308 0.300 0.946 0.940 0.924 0.930
IPCW2 0.003 0.008 0.105 0.178 0.100 0.099 0.179 0.174 0.928 0.924 0.944 0.940

DR(Cox) 0.003 0.006 0.096 0.160 0.087 0.086 0.156 0.151 0.920 0.916 0.940 0.928
DR(lognorm) 0.003 0.006 0.096 0.160 0.087 0.086 0.156 0.151 0.916 0.916 0.940 0.926
DR(loglog) 0.003 0.006 0.096 0.160 0.087 0.086 0.156 0.151 0.920 0.916 0.940 0.928

Pseudo 0.002 0.008 0.096 0.156 0.087 0.086 0.156 0.152 0.916 0.916 0.944 0.928

t2

IPCW1 0.008 0.001 0.176 0.323 0.173 0.172 0.306 0.299 0.950 0.950 0.922 0.928
IPCW2 0.004 0.013 0.124 0.224 0.119 0.118 0.213 0.208 0.950 0.936 0.928 0.924

DR(Cox) 0.004 0.015 0.105 0.191 0.102 0.101 0.182 0.177 0.952 0.946 0.938 0.930
DR(lognorm) 0.004 0.015 0.105 0.191 0.102 0.101 0.182 0.178 0.956 0.952 0.938 0.932
DR(loglog) 0.004 0.015 0.105 0.191 0.102 0.101 0.182 0.178 0.954 0.946 0.940 0.930

Pseudo 0.004 0.013 0.105 0.186 0.102 0.101 0.183 0.178 0.954 0.944 0.946 0.936

t3

IPCW1 −0.007 −0.020 0.163 0.297 0.151 0.150 0.263 0.257 0.936 0.932 0.884 0.884
IPCW2 −0.007 −0.015 0.129 0.239 0.122 0.120 0.214 0.208 0.930 0.938 0.894 0.892

DR(Cox) −0.006 −0.008 0.104 0.199 0.097 0.097 0.174 0.168 0.938 0.930 0.918 0.900
DR(lognorm) −0.006 −0.008 0.105 0.200 0.098 0.097 0.174 0.169 0.932 0.930 0.920 0.900
DR(loglog) −0.006 −0.008 0.105 0.199 0.098 0.097 0.174 0.169 0.936 0.932 0.918 0.902

Pseudo −0.005 −0.011 0.105 0.191 0.098 0.097 0.175 0.170 0.934 0.932 0.930 0.916

n = 1000

t1

IPCW1 −0.002 0.006 0.126 0.238 0.122 0.121 0.217 0.215 0.940 0.944 0.934 0.932
IPCW2 −0.004 −0.000 0.073 0.130 0.070 0.070 0.124 0.123 0.944 0.948 0.940 0.940

DR(Cox) −0.001 −0.002 0.069 0.120 0.061 0.061 0.109 0.108 0.924 0.926 0.932 0.934
DR(lognorm) −0.001 −0.001 0.069 0.120 0.061 0.061 0.109 0.108 0.922 0.926 0.936 0.936
DR(loglog) −0.001 −0.001 0.069 0.120 0.061 0.061 0.109 0.108 0.922 0.926 0.934 0.936

Pseudo −0.001 −0.002 0.069 0.120 0.061 0.061 0.109 0.108 0.924 0.924 0.932 0.934

t2

IPCW1 0.000 0.003 0.126 0.250 0.122 0.121 0.219 0.216 0.948 0.944 0.910 0.908
IPCW2 0.002 0.001 0.082 0.161 0.084 0.083 0.150 0.148 0.966 0.960 0.938 0.942

DR(Cox) 0.001 −0.002 0.075 0.136 0.071 0.071 0.127 0.125 0.940 0.940 0.940 0.940
DR(lognorm) 0.001 −0.002 0.075 0.136 0.071 0.071 0.127 0.126 0.940 0.938 0.940 0.940
DR(loglog) 0.001 −0.002 0.074 0.136 0.071 0.071 0.127 0.126 0.940 0.938 0.942 0.940

Pseudo 0.001 −0.002 0.074 0.136 0.071 0.071 0.127 0.126 0.940 0.938 0.942 0.940

t3

IPCW1 0.003 0.004 0.115 0.216 0.108 0.108 0.190 0.188 0.942 0.946 0.932 0.920
IPCW2 0.001 0.002 0.086 0.157 0.086 0.085 0.151 0.150 0.952 0.944 0.950 0.938

DR(Cox) 0.000 −0.001 0.072 0.128 0.068 0.068 0.121 0.120 0.950 0.950 0.936 0.938
DR(lognorm) 0.001 −0.001 0.072 0.129 0.069 0.068 0.122 0.121 0.944 0.946 0.938 0.942
DR(loglog) 0.001 −0.001 0.072 0.129 0.068 0.068 0.121 0.121 0.950 0.946 0.938 0.938

Pseudo 0.001 −0.001 0.072 0.129 0.069 0.068 0.122 0.121 0.944 0.950 0.938 0.934

IPCW1: (2.2), IPCW2 : (2.3), DR(Cox): (2.4) with calculating Q by Cox model, DR(lognorm): (2.4) with calculating
Q with AFT model from lognormal distribution, DR(loglog): (2.4) with calculating Q with AFT model from log-logistic
distribution, Pseudo : pseudo-value approach by Anderson et al. (2003), HC0: plug-in, NN: nearest neighbor, LM :
bandwidth selection by Ludwig and Miller (2007), MSE : bandwidth selection by MSE optimization in Calonico et al.
(2014).

For variance estimation, we propose an estimation adapted by Cho et al. (2021). By applying
asymptotic result in the Appendix A (Cho et al., 2021), given h, the asymptotic variance of τ̂DR(t) is

ΣDR
S RD (G0, S ∗) (t) =

1
n

eT
1

(
Γ−1

h+φVV+,DR(t)Γ−1
h+ + Γ−1

h−φVV−,DR(t)Γ−1
h−

)
e1,

where Γh+ and Γh−, φVV+,DR(t) and φVV−,DR(t) are defined in Appendix, and e1 = (1, 0)T .
It is crucial to estimate φVV+,DR(t) and φVV−,DR(t) for variance estimation. As discussed in Cho et

al. (2021), we use two estimation methods for φVV+,DR(t) and φVV−,DR(t) : Plug-in and nearest neigh-
bor (NN) methods (Calonico et al., 2014). In the plug-in approach, we define usual residuals from DR
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Table 2: Simulation results with data generated from Cox model with 60% censoring rate

Bias ESD SE Cover

LM MSE LM MSE LM MSE LM MSE
NN HC0 NN HC0 NN HC0 NN HC0

n = 500

t1

IPCW1 0.002 −0.008 0.371 0.698 0.358 0.355 0.622 0.601 0.938 0.936 0.936 0.924
IPCW2 0.002 0.016 0.141 0.245 0.131 0.129 0.234 0.227 0.934 0.934 0.934 0.932

DR(Cox) 0.005 0.010 0.098 0.172 0.092 0.091 0.165 0.160 0.922 0.926 0.932 0.930
DR(lognorm) 0.005 0.010 0.098 0.172 0.092 0.091 0.165 0.160 0.924 0.928 0.932 0.930
DR(loglog) 0.005 0.010 0.098 0.172 0.092 0.091 0.165 0.160 0.924 0.928 0.932 0.932

Pseudo 0.005 0.010 0.098 0.172 0.092 0.091 0.165 0.160 0.922 0.926 0.934 0.926

t2

IPCW1 0.001 −0.007 0.400 0.683 0.351 0.347 0.595 0.576 0.948 0.948 0.910 0.904
IPCW2 −0.005 0.008 0.217 0.411 0.202 0.201 0.358 0.349 0.946 0.936 0.946 0.944

DR(Cox) −0.001 0.008 0.128 0.238 0.123 0.122 0.220 0.214 0.934 0.932 0.914 0.914
DR(lognorm) −0.000 0.009 0.128 0.238 0.123 0.122 0.221 0.214 0.936 0.934 0.918 0.916
DR(loglog) −0.001 0.009 0.128 0.238 0.123 0.122 0.220 0.214 0.938 0.932 0.910 0.916

Pseudo 0.000 0.009 0.130 0.238 0.124 0.123 0.221 0.215 0.934 0.932 0.922 0.920

n = 1000

t1

IPCW1 −0.004 −0.000 0.278 0.491 0.257 0.256 0.449 0.445 0.940 0.938 0.934 0.928
IPCW2 −0.001 0.005 0.095 0.176 0.092 0.091 0.163 0.161 0.938 0.940 0.944 0.942

DR(Cox) 0.000 0.002 0.070 0.123 0.064 0.064 0.114 0.113 0.940 0.932 0.948 0.946
DR(lognorm) 0.000 0.002 0.070 0.123 0.064 0.064 0.114 0.113 0.942 0.932 0.948 0.950
DR(loglog) 0.000 0.002 0.070 0.123 0.064 0.064 0.114 0.113 0.940 0.932 0.950 0.948

Pseudo 0.001 0.002 0.070 0.123 0.064 0.064 0.114 0.113 0.938 0.932 0.948 0.948

t2

IPCW1 −0.004 −0.003 0.265 0.475 0.251 0.249 0.437 0.432 0.958 0.960 0.936 0.936
IPCW2 −0.004 −0.003 0.149 0.281 0.144 0.143 0.255 0.252 0.948 0.948 0.924 0.928

DR(Cox) −0.001 −0.004 0.087 0.164 0.087 0.086 0.155 0.153 0.950 0.950 0.946 0.942
DR(lognorm) 0.000 −0.003 0.087 0.164 0.087 0.087 0.155 0.153 0.948 0.946 0.944 0.942
DR(loglog) −0.000 −0.003 0.087 0.164 0.087 0.086 0.155 0.153 0.948 0.950 0.946 0.942

Pseudo −0.000 −0.004 0.087 0.165 0.087 0.087 0.156 0.153 0.950 0.950 0.944 0.942

IPCW1: (2.2), IPCW2 : (2.3), DR(Cox): (2.4) with calculating Q by Cox model, DR(lognorm): (2.4) with calculating
Q with AFT model from lognormal distribution, DR(loglog): (2.4) with calculating Q with AFT model from log-logistic
distribution, Pseudo : pseudo-value approach by Anderson et al. (2003), HC0: plug-in, NN: nearest neighbor, LM :
bandwidth selection by Ludwig and Miller (2007), MSE : bandwidth selection by MSE optimization in Calonico et al.
(2014).

transformed outcome and {α̂R,DR(t), α̂L,DR(t)}. Then by using these residuals to estimate φVV+,DR(t) and
φVV−,DR(t) and compute empirical version of ΣDR

S RD(G0, S ∗)(t). NN method uses residuals by distance
in each observation i. To reduce the influence of outliers in variance estimation, we define the closest
values on each individual transformed DR outcome. Then we compute residuals based on the average
of the closest values and the DR outcome, and then estimate ΣDR

S RD(G0, S ∗)(t). We can also apply these
two approaches to IPCW1 and IPCW2 estimators. Details of the derivation of the variance are shown
in the Appendix B.

3.2. Causal effect estimation and inference with the pseudo-values

Now we extend this idea to another type of unbiased estimator of P(T > t|W = w) with local linear
regression. One of the methods in survival data to directly model survival quantities is the pseudo-
value approach (Anderson et al., 2003) for our method. Let θ be a scalar parameter. Let X1, . . . , Xn

be independent and identically distributed data, and f be a function such that E{ f (Xi)} = θ. Suppose
that we have A1, . . . , An independent and identically distributed covariates. We define conditional
expectation θi = E{ f (Xi)|Ai}, which gives θ when we integrate θi with respect to Ai. Then we define
pseudo-value for ith observation by

θ̂i = nθ̂ − (n − 1)θ̂−i.
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Table 3: Simulation results with data generated from additive hazard model with 30% censoring rate

Bias ESD SE Cover

LM MSE LM MSE LM MSE LM MSE
NN HC0 NN HC0 NN HC0 NN HC0

n = 500

t1

IPCW1 0.002 −0.001 0.175 0.330 0.170 0.169 0.303 0.295 0.948 0.948 0.922 0.922
IPCW2 0.004 0.005 0.107 0.179 0.102 0.101 0.183 0.177 0.934 0.932 0.952 0.948

DR(Cox) 0.003 0.003 0.097 0.159 0.089 0.088 0.159 0.154 0.936 0.930 0.950 0.942
DR(lognorm) 0.003 0.004 0.097 0.158 0.089 0.088 0.159 0.154 0.936 0.930 0.950 0.944
DR(loglog) 0.003 0.004 0.097 0.158 0.089 0.088 0.159 0.154 0.936 0.930 0.950 0.942

Pseudo 0.003 0.004 0.097 0.158 0.089 0.088 0.159 0.154 0.936 0.930 0.950 0.940

t2

IPCW1 0.004 0.010 0.182 0.324 0.171 0.170 0.304 0.297 0.948 0.938 0.924 0.924
IPCW2 0.005 0.017 0.132 0.231 0.122 0.121 0.219 0.213 0.930 0.930 0.930 0.926

DR(Cox) 0.003 0.016 0.117 0.196 0.105 0.105 0.188 0.183 0.926 0.918 0.944 0.942
DR(lognorm) 0.003 0.016 0.117 0.196 0.105 0.104 0.188 0.183 0.926 0.918 0.944 0.940
DR(loglog) 0.003 0.016 0.117 0.196 0.105 0.105 0.188 0.183 0.926 0.918 0.942 0.942

Pseudo 0.003 0.017 0.117 0.196 0.106 0.105 0.188 0.183 0.922 0.916 0.946 0.944

t3

IPCW1 −0.004 −0.009 0.162 0.292 0.148 0.147 0.259 0.253 0.940 0.948 0.898 0.898
IPCW2 −0.006 −0.010 0.129 0.242 0.121 0.120 0.216 0.210 0.928 0.936 0.914 0.910

DR(Cox) −0.003 −0.006 0.106 0.201 0.100 0.099 0.178 0.173 0.952 0.950 0.926 0.918
DR(lognorm) −0.003 −0.006 0.107 0.202 0.100 0.099 0.179 0.174 0.950 0.948 0.916 0.920
DR(loglog) −0.002 −0.006 0.107 0.201 0.100 0.099 0.178 0.173 0.952 0.948 0.918 0.918

Pseudo −0.002 −0.005 0.107 0.201 0.100 0.099 0.178 0.173 0.952 0.954 0.922 0.920

n = 1000

t1

IPCW1 −0.004 −0.004 0.124 0.238 0.121 0.120 0.215 0.212 0.956 0.948 0.948 0.938
IPCW2 −0.005 −0.005 0.075 0.134 0.071 0.071 0.127 0.125 0.924 0.924 0.950 0.946

DR(Cox) −0.003 −0.006 0.070 0.121 0.062 0.062 0.111 0.110 0.926 0.926 0.934 0.932
DR(lognorm) −0.003 −0.006 0.070 0.122 0.062 0.062 0.111 0.110 0.928 0.922 0.938 0.936
DR(loglog) −0.003 −0.006 0.070 0.122 0.062 0.062 0.111 0.110 0.926 0.922 0.932 0.934

Pseudo −0.003 −0.006 0.070 0.121 0.062 0.062 0.111 0.110 0.926 0.926 0.934 0.936

t2

IPCW1 −0.000 −0.005 0.129 0.243 0.122 0.121 0.218 0.215 0.942 0.940 0.926 0.920
IPCW2 0.002 −0.001 0.087 0.164 0.086 0.086 0.155 0.153 0.962 0.956 0.940 0.942

DR(Cox) 0.000 −0.006 0.076 0.139 0.074 0.073 0.132 0.130 0.944 0.942 0.946 0.946
DR(lognorm) 0.000 −0.006 0.076 0.139 0.074 0.073 0.132 0.130 0.940 0.942 0.950 0.946
DR(loglog) 0.000 −0.006 0.076 0.139 0.074 0.073 0.132 0.130 0.944 0.942 0.948 0.948

Pseudo 0.000 −0.006 0.076 0.139 0.074 0.074 0.132 0.130 0.942 0.942 0.948 0.944

t3

IPCW1 −0.001 −0.008 0.112 0.206 0.106 0.106 0.187 0.184 0.942 0.936 0.916 0.918
IPCW2 −0.001 −0.006 0.090 0.161 0.086 0.086 0.152 0.150 0.938 0.942 0.960 0.950

DR(Cox) −0.001 −0.006 0.074 0.131 0.070 0.070 0.124 0.123 0.942 0.946 0.940 0.940
DR(lognorm) −0.001 −0.006 0.076 0.132 0.071 0.070 0.125 0.124 0.934 0.938 0.942 0.934
DR(loglog) −0.001 −0.006 0.075 0.131 0.070 0.070 0.125 0.124 0.938 0.940 0.938 0.936

Pseudo −0.001 −0.006 0.075 0.132 0.070 0.070 0.125 0.124 0.940 0.946 0.936 0.938

IPCW1: (2.2), IPCW2 : (2.3), DR(Cox): (2.4) with calculating Q by Cox model, DR(lognorm): (2.4) with calculating
Q with AFT model from lognormal distribution, DR(loglog): (2.4) with calculating Q with AFT model from log-logistic
distribution, Pseudo : pseudo-value approach by Anderson et al. (2003), HC0: plug-in, NN: nearest neighbor, LM :
bandwidth selection by Ludwig and Miller (2007), MSE : bandwidth selection by MSE optimization in Calonico et al.
(2014).

For the survival function, f (t) = I(T > t). Then our pseudo-values for fixed time t are

θ̂i(t) = nθ̂(t) − (n − 1)θ̂−i(t),

where θ̂(t) is the Kaplan-Meier estimator at time t and θ̂−i(t) is the leave-one-out Kaplan-Meier esti-
mator.

Since the pseudo-value approach is based on conditional expectation θi, it is sensible to apply the
approach in our RD design. In other words, we compute the pseudo-values and use them as outcomes
for each individual. Next, we do local linear regression by plugging in θ̂i(t) in the place of V̂CUT,i(t) as
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Table 4: Simulation results with data generated from additive hazard model with 50% censoring rate

Bias ESD SE Cover

LM MSE LM MSE LM MSE LM MSE
NN HC0 NN HC0 NN HC0 NN HC0

n = 500

t1

IPCW1 −0.008 −0.032 0.301 0.535 0.282 0.279 0.493 0.477 0.940 0.938 0.936 0.922
IPCW2 −0.001 0.004 0.128 0.215 0.119 0.118 0.213 0.206 0.920 0.922 0.954 0.942

DR(Cox) 0.004 0.005 0.098 0.164 0.091 0.090 0.163 0.158 0.924 0.928 0.938 0.932
DR(lognorm) 0.005 0.005 0.097 0.163 0.091 0.090 0.163 0.158 0.930 0.930 0.940 0.932
DR(loglog) 0.005 0.005 0.098 0.163 0.091 0.090 0.163 0.158 0.928 0.928 0.936 0.932

Pseudo 0.005 0.005 0.098 0.164 0.091 0.090 0.163 0.158 0.924 0.930 0.938 0.932

t2

IPCW1 −0.011 −0.022 0.294 0.522 0.276 0.274 0.480 0.466 0.950 0.944 0.914 0.916
IPCW2 0.003 0.011 0.174 0.311 0.159 0.158 0.282 0.274 0.924 0.920 0.922 0.928

DR(Cox) 0.002 0.017 0.127 0.213 0.115 0.114 0.205 0.200 0.924 0.918 0.946 0.942
DR(lognorm) 0.002 0.016 0.127 0.213 0.115 0.114 0.205 0.200 0.918 0.916 0.948 0.942
DR(loglog) 0.002 0.017 0.127 0.213 0.115 0.114 0.205 0.200 0.922 0.920 0.948 0.946

Pseudo 0.002 0.017 0.127 0.213 0.116 0.115 0.205 0.200 0.920 0.916 0.946 0.944

n = 1000

t1

IPCW1 −0.004 0.001 0.211 0.381 0.200 0.199 0.354 0.352 0.932 0.936 0.934 0.938
IPCW2 −0.004 −0.005 0.087 0.162 0.084 0.083 0.149 0.147 0.944 0.940 0.936 0.938

DR(Cox) −0.003 −0.005 0.070 0.123 0.064 0.064 0.114 0.112 0.926 0.932 0.926 0.934
DR(lognorm) −0.003 −0.005 0.070 0.123 0.064 0.064 0.114 0.112 0.930 0.930 0.926 0.934
DR(loglog) −0.003 −0.005 0.070 0.123 0.064 0.064 0.114 0.112 0.926 0.930 0.926 0.934

Pseudo −0.003 −0.005 0.070 0.123 0.064 0.064 0.114 0.112 0.928 0.932 0.928 0.934

t2

IPCW1 −0.001 −0.002 0.210 0.388 0.197 0.196 0.347 0.345 0.952 0.954 0.926 0.926
IPCW2 −0.002 −0.004 0.117 0.220 0.112 0.112 0.201 0.199 0.946 0.948 0.940 0.936

DR(Cox) −0.001 −0.007 0.081 0.152 0.081 0.081 0.145 0.143 0.950 0.950 0.942 0.942
DR(lognorm) −0.000 −0.007 0.081 0.152 0.081 0.081 0.145 0.143 0.946 0.948 0.944 0.940
DR(loglog) −0.000 −0.007 0.081 0.152 0.081 0.081 0.145 0.143 0.946 0.950 0.940 0.940

Pseudo −0.000 −0.007 0.081 0.152 0.081 0.081 0.145 0.143 0.950 0.946 0.944 0.942

IPCW1: (2.2), IPCW2 : (2.3), DR(Cox): (2.4) with calculating Q by Cox model, DR(lognorm): (2.4) with calculating
Q with AFT model from lognormal distribution, DR(loglog): (2.4) with calculating Q with AFT model from log-logistic
distribution, Pseudo : pseudo-value approach by Anderson et al. (2003), HC0: plug-in, NN: nearest neighbor, LM :
bandwidth selection by Ludwig and Miller (2007), MSE : bandwidth selection by MSE optimization in Calonico et al.
(2014).

shown in (3.1) and (3.2), along with bandwidth selection methods in (3.8) and (3.9). Then we obtain
αR(t) and αL(t), say α̂R,Pseudo,ĥ(t) and α̂L,Pseudo,ĥ(t), and our estimator is

τ̂Pseudo(t) = α̂R,Pseudo,ĥ(t) − α̂L,Pseudo,ĥ(t).

Statistical inference corresponding to τ̂Pseudo(t) can be performed similarly to IPCW and DR estima-
tors.

4. Simulation

We do various Monte Carlo simulations to evaluate the numerical performance of our proposed
method with the finite sample. We generate W ∼ Unif(0, 1). Our first model is the Cox proportional
hazard model (Cox, 1972), which is

λ(t | W) = eβI(W≥0.5),

where β = −1. Censoring variable C follows Unif(0, b) where b is taken to achieve 30% censoring
rate. Sample sizes are 500 and 1000. We compute the 25th, 50th and 75th percentile of failure times
by using Monte Carlo simulations. We implement and compare the performance of five methods:
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Two inverse probability censoring weighted (IPCW) methods and doubly robust methods proposed
in Section 2 with 3 outcome regression models (Cox model, AFT model with lognormal distribution
and AFT model with log-logistic distribution). We denote using transformation in (2.2) and (2.3)
as IPCW1 and IPCW2. Moreover, we call doubly robust transformation in (2.4) by calculating Q
by Cox model, AFT models from lognormal distribution and log-logistic distributions by DR(Cox),
DR(lognorm) and DR(loglog), respectively. We also apply the pseudo-value approach (Pseudo) by
Anderson et al. (2003) as described in Section 4. In each method, for bandwidth estimation, we
use approaches by Ludwig and Miller (2007) (denoted as LM) and MSE optimization in Calonico et
al. (2014) (denoted as MSE). For the computation of standard error, we use the plug-in (HC0) and
nearest neighbor (NN) methods mentioned in the previous section. We compute bias (Bias), empirical
standard deviation (ESD), mean of standard error (SEE) and 95% coverage rate (Cover). We use the
rdrobust package Calonico et al. (2015) in R to compute estimators and standard errors.

The simulation result from these three conditional expectations is shown in Table 1. All estima-
tors are nearly unbiased. DR estimators are more efficient than IPCW1 and IPCW2 estimators. The
efficiency gain of DR estimators compared to IPCW1 is larger than that of IPCW2. It is interesting
to note that the pseudo-value approach has the similar performance with DR estimators. All methods
have satisfactory large sample properties in general although all estimators in t3 for n = 500 have a
lower coverage rate compared to the nominal 95% level. However, when the sample size increases,
all methods achieve the nominal coverage rate. It is interesting to notice that both ESD and SEE from
the LM method are smaller than the MSE method although biases from the two bandwidth choices
are not very large. The ways to estimate σ2

DR,+(t; Wi,G0, S ∗) and σ2
DR,−(t; Wi,G0, S ∗) do not influence

the estimation of variance; both NN and HC0 provide similar values to the SEE.
As shown in the data analysis section, since our data has a high censoring rate, we run another

simulation with 60% censoring rate. Table 2 shows the result. In this simulation, we only consider the
25th and 50th percentile of the failure time due to a high censoring rate. ESD and SEE are higher than
the 30% censoring rate, which is sensible due to a higher loss of information than the 30% censoring
case. The general trend of simulation result is similar to one in the 30% censoring rate.

Now we consider another simulation setting. Let hazard function λ(t|W) be

λ(t | W) = 2 + βI (W ≥ 0.5) ,

where β = −1. This model is the additive hazard model (Lin and Ying, 1994), which is widely used
in causal inference for survival analysis. Similar to the Cox model, we generate censoring variable C
following Unif(0, b), where b is chosen to achieve 30% censoring rate. As same procedure we did in
the Cox model, we calculate the 25th, 50th and 75th percentiles of failure time. The simulation result
is shown in Table 3. We can see a similar trend; all methods have good large sample properties. We
also run simulation with 50% censoring rate. Similar to Cox model, we only consider 25th and 50th

percentiles. Table 4 shows the simulation result. The result is similar to one in 30% censoring rate,
except containing a higher ESD and SSE.

5. Real data analysis

We apply our method to the PLCO dataset focusing on prostate cancer to evaluate whether a PSA-
based screening strategy can be a meaningful tool to diagnose survival. In this PLCO trial, from
1993 to 2001, 76,678 men were randomized to receive annual PSA screening for 6 years or no PSA
screening at all. The previous study of the PLCO trial has shown that there had been no significant
decrease of mortality or prostate cancer-specific incidence although detection of prostate cancer had
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(a)

(b)

Figure 1: Estimated treatment effects (solid lines) and their 95% confidence interval (nearest neighbor method:
Dased lines, plug-in method: Dotted lines). Left and right plots are methods with LM and MSE, respectively.
In each plot, the colors imply as follows - Black : IPCW1, red : IPCW2, blue : DR(Cox), gold : DR(lognorm),

brown : DR(loglog), darkgreen : Pseudo.

been increased (Andriole et al., 2009). For further workup in this trial, the golden rule is PSA level
4.0ng/ml, which implies that clinicians would expect to find the difference in mortality or cancer
incidence on the threshold 4.0ng/ml. The question is “Is there any difference of survival probability
at the PSA level greater or equal to 4.0mg/nl and less than 4.0mg/nl?” If the difference exists, then
the PSA level 4.0mg/nl can be used as threshold for further checkup and biopsy (Cho et al., 2021)
As explained in Cho et al. (2021) and the Introduction section, the motivation and this trial setup
naturally create the sharp RD design. Cho et al. (2021) focus on the difference in mean of logarithm
of time for the occurrence of cancer, whichever comes first (first cancer occurrence) or for prostate
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Table 5: Sharp RD design analysis result for mortality in the PLCO dataset with the screening group only

Est 95% CI

LM MSE LM MSE
NN HC0 NN HC0

t1

IPCW1 −0.010 −0.108 (−0.249, 0.228) (−0.254, 0.234) (−0.596, 0.381) (−0.616, 0.400)
IPCW2 −0.013 −0.019 (−0.033, 0.007) (−0.033, 0.007) (−0.049, 0.011) (−0.049, 0.010)

DR(Cox) −0.012 −0.021 (−0.033, 0.010) (−0.033, 0.010) (−0.051, 0.009) (−0.051, 0.008)
DR(lognorm) −0.012 −0.021 (−0.033, 0.010) (−0.033, 0.010) (−0.051, 0.009) (−0.051, 0.008)
DR(loglog) −0.012 −0.021 (−0.033, 0.010) (−0.033, 0.010) (−0.051, 0.009) (−0.051, 0.008)

Pseudo −0.012 −0.021 (−0.033, 0.010) (−0.033, 0.010) (−0.051, 0.009) (−0.051, 0.008)

t2

IPCW1 −0.020 −0.101 (−0.261, 0.220) (−0.267, 0.226) (−0.590, 0.387) (−0.609, 0.406)
IPCW2 −0.029 −0.032 (−0.060, 0.003) (−0.060, 0.003) (−0.086, 0.023) (−0.086, 0.023)

DR(Cox) −0.025 −0.022 (−0.060, 0.009) (−0.060, 0.009) (−0.077, 0.032) (−0.076, 0.031)
DR(lognorm) −0.025 −0.022 (−0.060, 0.009) (−0.060, 0.009) (−0.077, 0.032) (−0.076, 0.032)
DR(loglog) −0.025 −0.022 (−0.060, 0.009) (−0.060, 0.009) (−0.077, 0.032) (−0.076, 0.032)

Pseudo −0.025 −0.022 (−0.060, 0.009) (−0.060, 0.009) (−0.077, 0.032) (−0.076, 0.031)

t3

IPCW1 −0.005 −0.111 (−0.249, 0.238) (−0.253, 0.243) (−0.602, 0.380) (−0.617, 0.396)
IPCW2 −0.016 −0.049 (−0.060, 0.028) (−0.060, 0.028) (−0.124, 0.026) (−0.124, 0.025)

DR(Cox) −0.033 −0.031 (−0.083, 0.017) (−0.082, 0.016) (−0.103, 0.040) (−0.102, 0.039)
DR(lognorm) −0.033 −0.031 (−0.083, 0.017) (−0.082, 0.016) (−0.103, 0.040) (−0.102, 0.039)
DR(loglog) −0.033 −0.031 (−0.083, 0.016) (−0.082, 0.016) (−0.103, 0.040) (−0.102, 0.039)

Pseudo −0.033 −0.031 (−0.083, 0.017) (−0.082, 0.016) (−0.103, 0.040) (−0.102, 0.039)

t4

IPCW1 −0.008 −0.073 (−0.251, 0.235) (−0.256, 0.240) (−0.555, 0.410) (−0.571, 0.426)
IPCW2 0.010 −0.182 (−0.125, 0.145) (−0.126, 0.145) (−0.482, 0.117) (−0.484, 0.119)

DR(Cox) −0.014 −0.013 (−0.123, 0.094) (−0.123, 0.094) (−0.127, 0.101) (−0.127, 0.101)
DR(lognorm) −0.006 −0.003 (−0.116, 0.104) (−0.116, 0.104) (−0.118, 0.112) (−0.118, 0.112)
DR(loglog) −0.009 −0.007 (−0.118, 0.100) (−0.118, 0.100) (−0.121, 0.108) (−0.121, 0.108)

Pseudo −0.014 −0.013 (−0.123, 0.095) (−0.123, 0.095) (−0.127, 0.101) (−0.127, 0.101)

IPCW1: (2.2), IPCW2 : (2.3), DR(Cox): (2.4) with calculating Q by Cox model, DR(lognorm): (2.4) with calculating
Q with AFT model from lognormal distribution, DR(loglog): (2.4) with calculating Q with AFT model from lognormal
distribution log-logistic distributions, HC0: plug-in, NN: nearest neighbor, LM : bandwidth selection by Ludwig and Miller
(2007), MSE : bandwidth selection by MSE optimization in Calonico et al. (2014).

cancer (prostate cancer occurrence). In this analysis, we want to find whether there exists a difference
between disease-free survival at the PSA level 4.0mg/nl.

In this data analysis, we focus on the screening group with baseline PSA level which was measured
before PSA screening. The censoring rate is 66%, so it is not possible to compute higher percentile
times by Kaplan-Meier. Hence we use observed times t1 = 5, t2 = 10, t3 = 15 and t4 = 20.

We calculate the causal effect and the associated 95% confidence interval. The results are shown
in Table 5 and Figure 1. The causal effect is similar between the LM and MSE methods, but the
95% confidence interval from the MSE method is wider than the LM method, as observed in the
simulation studies. From the 95% confidence interval, we recognize that the IPCW1 estimator shows
wide variability as simulation studies. All DR estimators and the pseudo-value based estimator have
smaller variances than IPCW1 and IPCW2. All methods show that the intervals in the later time points
are wider than the ones in the earlier. This is sensible due to the high rate of censoring. It is interesting
to note that the 95% confidence interval IPCW2 estimator from the MSE method is much wider in the
t4 than earlier time points. Since all 95% confidence intervals include 0, we can conclude that there is
no significant effect of survival difference using PSA level 4.0ng/ml.



Regression discontinuity for survival data 169

6. Conclusion

In this paper, we propose the estimation of treatment effects in the survival data for the survival
function. This methodology is practically more meaningful than the one in Cho et al. (2021) in that
the survival function is more relevant application than using restricted mean survival time.

We use IPCW and DR robust transformation to account for censoring. However, the survival
function is between 0 and 1, so directly applying local linear regression may cause an issue because
the predicted values do not belong to 0 and 1. It is an interesting future research to the survival model
directly without this restriction.

As discussed in Section 3, there is a bias term involving the second derivative of limw↓w0 P(T >
t|W = w) and limw↑w0 P(T > t|W = w). Let Λ0(u|W) be the covariate-dependent cumulative hazard
function of T . If limit and differentiation are interchanged, since P(T > t|W = w) = e−Λ0(u|w), the
second derivative of limw→w0 P(T > t|W = w) can be expressed

lim
w↓w0

[(
∂

∂t
λ0(t | w)

)
+ {λ0(t | w)}2

]
e−Λ0(t|w)

lim
w↑w0

[(
∂

∂t
λ0(t | w)

)
+ {λ0(t | w)}2

]
e−Λ0(t|w). (6.1)

When (6.1) goes 0 in given t and when h ∝ n−a where 1/5 < a < 2/5 (Imbens and Lemieux, 2008),
i.e., when we do undersmoothing, the bias term will be negligible. However, undersmoothing may
cause increase in variance due to bias-variance tradeoff. Calonico et al. (2014) propose bias-corrected
estimator for uncensored data. It is an interesting future research to reduce bias in the estimation of
RD design for censored data.

In practice, one would like to include covariates in the modeling. In a randomized study, including
covariates leads to the treatment effect being more powerful by reducing the variance of the treatment
effect. In RD design, the inclusion of covariates is discussed in uncensored data (Calonico et al.,
2019), but it has not been studied deeply in censored data. It would be an interesting research to
adjust the effect of covariates in RD design.

In the simulation study, we have seen that the pseudo-value approach has similar performance to
DR method. Moreover, in the PLCO dataset analysis, the pseudo-value method has almost identical
estimated value and confidence interval to DR(Cox). It will be an interesting future research why
the pseudo-value approach shows the similar performance. In the PLCO dataset, one may be inter-
ested in the analysis of prostate cancer incidence given that other cancers exist. This is competing
risks setup. Our methodology can be extended to competing risks data, but more assumptions are
required to identify treatment effects. One may consider using cause-specific hazard. However, in the
view of practical and identifiable quantity, cumulative incidence function will be a reasonable one for
identification of treatment effect. This can also be an interesting future research.
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Appendix A: Proof of Theorem 1

Let O = (T̃ ,∆,W) and O = (T̃i,∆i,Wi), i = 1, . . . , n. Define

µ+(t; w) = lim
w↓w0

P(T > t | W = w), µ−(t; w) = lim
w↑w0

P(T > t | W = w),

VDR(t; O,G, S ) =
∆(t)I(T > t)

G (T (t))
+

∫ T̃

0

Q(t, u | W, S )
G(u)

dMG(u),

VDR∗ (t; O,G, S ) = VDR(t; O,G, S ) − µ+(t; w0) − µ′+(t; w0)(W − w0),

L+
ih = I(Wi ≥ w0)K

(Wi − w0

h

)
, L−ih = I(Wi < w0)K

(Wi − w0

h

)
,

σ2
DR(t; w,G, S ) = Var(VDR(t; O,G, S ) | W = w),

σ2+
DR(t; w0,G, S ) = lim

ε↓w0
Var(VDR(t; O,G, S ) | W = w),

σ2−
DR(t; w0,G, S ) = lim

ε↑w0
Var(VDR(t; O,G, S ) | W = w).

We further define

Xh =



1
W1 − w0

h
1

W2 − w0

h
...

...

1
Wn − w0

h



W+
h =



I(W1 ≥ w0)K
(W1 − w0

h

)
0 0 . . . 0

0 I(W2 ≥ w0)K
(Wi − w0

h

)
0 . . . 0

...
...

...
. . . 0

0 0 . . . 0 I(Wn ≥ w0)K
(Wi − w0

h

)



W−
h =



I(W1 < w0)K
(W1 − w0

h

)
0 0 . . . 0

0 I(W2 < w0)K
(Wi − w0

h

)
0 . . . 0

...
...

...
. . . 0

0 0 . . . 0 I(Wn < w0)K
(Wi − w0

h

)


.

Then E{VDR(O; G0, S ∗)} = P(T > t|W) ≡ µ(t; W). Similar to Cho et al. (2021), let h be given and we
assume following conditions:

(C1) For W , w0, let µ(t; w) be twice continuously differentiable functions. Let µ′(t; w) and µ′′(t; w)
be the first and second derivatives of µ(t; w). Let µ′+(t; w) and µ′′+(t; w) be the first and second
derivatives of µ+(t; w). We define similarly to µ′−(t; w) and µ′′−(t; w).

(C2) There exists a > 0 such that |µ+(t; w)|, |µ′+(t; w)|, |µ′′+(t; w)| are uniformly bounded on (w0,w0 +

a]. Similarly, |µ−(t; w)|, |µ′−(t; w)|, |µ′′−(t; w)| are uniformly bounded on [w0 − a,w0).
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(C3) µ+(t; w0), µ′+(t; w0), µ′′+(t; w0), µ−(t; w0).µ′−(t; w0) and µ′′−(t; w0) are finite.

(C4) Let g(w) be the common density of Wi. Assume that g(w) is continuous and bounded away from
zero in a neighborhood of w0.

(C5) σ2
DR(w; G0, S ∗) are uniformly bounded in a neighborhood of w0, andσ2+

DR(w0; G0, S ∗), σ2−
DR(w0; G0,

S ∗) and are finite.

(C6) lim
Wi↑w0

E[|VDR,i(t; Oi,G0, S ∗) − µ(t; Wi)|r |Wi], r = 1, 2, 3 are finite. We assume similarly when

Wi ↓ w0.

(C7) K is continuous and symmetric. Moreover, support of K is compact and for any u, K(u) ≥ 0.

(C8) The bandwidth satisfies h ∼ n−1/5 where ∼ indicates “asymptotically equivalent”.

(C9) Let Hn = op(1). Then

E
[(Wi − w0

h

) j1 (
L+

ih

) j2
Hn

]
= O(1), j1 = 0, . . . , 6, j2 = 1, 2, 3.

(C10) Ĝ is uniformly consistent to G0.

(C11) Ŝ is uniformly consistent to S ∗ where S ∗ is possibly incorrect model of S .

Let G0 be the survival function of censoring from the true model and S ∗ be the survival function
of failure time, which is possibly incorrect. Let

ρ+ =

( ∫ ∞

0
u2K(u)du

)2
−

( ∫ ∞

0
u3K(u)du

)( ∫ ∞

0
uK(u)du

)
2
{( ∫ ∞

0
u2K(u)du

)( ∫ ∞

0
K(u)du

)
−

( ∫ ∞

0
uK(u)du

)2} ,

ρ− =

( ∫ 0

−∞

u2K(u)du
)2
−

( ∫ 0

−∞

u3K(u)du
)( ∫ 0

−∞

uK(u)du
)

2
{( ∫ 0

−∞

u2K(u)du
)( ∫ 0

−∞

K(u)du
)
−

( ∫ 0

−∞

uK(u)du
)2} ,

υ+ =

∫ ∞

0

{( ∫ ∞

0
s2K(s)ds

)
−

( ∫ ∞

0
sK(s)ds

)
u
}2
{K(u)}2du

g(w0)
{( ∫ ∞

0
u2K(u)du

)( ∫ ∞

0
K(u)du

)
−

( ∫ ∞

0
uK(u)du

)2}2 ,

υ− =

∫ 0

−∞

{( ∫ 0

−∞

s2K(s)ds
)
−

( ∫ 0

−∞

sK(s)ds
)
u
}2
{K(u)}2du

g(w0)
{( ∫ 0

−∞

u2K(u)du
)( ∫ 0

−∞

K(u)du
)
−

( ∫ 0

−∞

uK(u)du
)2}2

.
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Moreover, since τ(t) = limw↓w0 P(T > t|W = w) − limw↑w P(T > t|W = w0), from our definition,
τ(t) = µ+(t; w0) − µ−(t; w0). Define

ϕ(t) = ρ+µ′′+(t; w0) − ρ−µ′′−(t; w0),

ΣIPCW1 (t; G) = υ+σ2+
IPCW1

(t; w0,G) + υ−σ2−
IPCW1

(t; w0,G),

ΣIPCW2 (t; G) = υ+σ2+
IPCW2

(t; w0,G) + υ−σ2−
IPCW2

(t; w0,G),

ΣDR(t; G, S ) = υ+σ2+
DR(t; w0,G, S ) + υ−σ2−

DR(t; w0,G, S ).

We propose the following theorem.

Theorem 1. Suppose that conditions (C1)–(C11) in the Appendix hold. By extending results from
Cho et al. (2021),

√
nh

{
τ̂IPCW1 (t) − τ(t) − ϕ(t)

} d
−→ N

(
0,ΣIPCW1 (t; G0)

)
,

√
nh

{
τ̂IPCW2 (t) − τ(t) − ϕ(t)

} d
−→ N

(
0,ΣIPCW2 (t; G0)

)
√

nh {τ̂DR(t) − τ(t) − ϕ(t)}
d
−→ N (0,ΣDR (t; G0, S ∗)) . (A.1)

In this proof, we only show the result for the DR estimators; Results are similar to the IPCW estima-
tors. Let Wr

ih = ((Wi − w0)/h)r, r = 0, 1. Consider

A+
DR∗,i,h(G, S ) =

(
W0

ihVDR∗,i(t; Oi,G, S )L+
ih

W1
ihVDR∗,i(t; Oi,G, S )L+

ih

)
, A−DR∗,i,h(G, S ) =

(
W0

ihVDR∗,i(t; Oi,G, S )L−ih
W1

ihVDR∗,i(t; Oi,G, S )L−ih

)
.

Then by changing response in Cho et al. (2021) with VDR(t; O,G, S ), the following lemmas hold.
Lemma 1. Let

A+
DR∗,h(t; Wi,G, S ) = E(A+

DR∗,i,h(t; G, S ) | Wi),

A−DR∗,h(t; Wi,G, S ) = E(A−DR∗,i,h(t; G, S ) | Wi).

Then

1
nh

n∑
i=1

A+
DR∗,h

(
Wi; Ĝ, Ŝ

)
= E

{ 1
nh

n∑
i=1

A+
DR∗,i,h (G0, S ∗)

}
+ op

(
h2

)
,

1
nh

n∑
i=1

A−DR∗,h

(
t; Wi, Ĝ, Ŝ

)
= E

{ 1
nh

n∑
i=1

A−DR∗,i,h (G0, S ∗)
}

+ op

(
h2

)
.

Lemma 2. Let dq =
∫ ∞

0 uq{K(u)}2du, q = 0, 1, 2 and

Ā+
DR∗,h

(
t;O, Ĝ, Ŝ

)
=

1
nh

n∑
i=1

{
A+

DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
− A+

DR∗,h

(
t; Wi, Ĝ, Ŝ

)}
,

Ā−DR∗,h

(
t;O, Ĝ, Ŝ

)
=

1
nh

n∑
i=1

{
A−DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
− A−DR∗,h

(
t; Wi, Ĝ, Ŝ

)}
.
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Then

Var
{
Ā+

DR∗,h(t;O,G0, S )
}

=
1

nh
σ2+

DR(t; w0; G0, S )g(w0)D,

Var
{
Ā−DR∗,h(t;O,G0, S )

}
=

1
nh
σ2−

DR(t; w0,G0, S )g(w0)D,

where

D =

(
d0 + o(1) d1 + o(1)
d1 + o(1) d2 + o(1)

)
.

Lemma 3.
√

nhĀ+
DR∗,h(t;O,G0, S )

d
−→ {g(w0)}N

(
0, σ2+

DR(t; w0,G0, S )D
)
,

√
nhĀ−DR∗,h(t;O,G0, S )

d
−→ {g(w0)}N

(
0, σ2−

DR(t; w0,G0, S )D
)
.

Lemma 4.

1
√

nh

n∑
i=1

A+
DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
−

1
2

n1/2h5/2g(w0)µ′′+(t; w0)δ
d
−→ {g(w0)}

1
2 N

(
0, σ2+

DR(t; w0,G0, S ∗)D
)
,

1
√

nh

n∑
i=1

A−DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
−

1
2

n1/2h5/2g(w0)µ′′−(t; w0)δ
d
−→ {g(w0)}

1
2 N

(
0, σ2−

DR (t; w0,G0, S ∗)D
)
,

where

δ =


∫ ∞

0 u2K(u)du∫ ∞
0 u3K(u)du

 .
Now we prove main theorem. Define VDR(t;O, Ĝ, Ŝ ) = {VDR,i(t; Oi, Ĝ, Ŝ )}ni=1. Then by using matrices,
we can express A+

DR∗,i,h(t; Oi, Ĝ, Ŝ ) and A−DR∗,i,h(t; Oi, Ĝ, Ŝ ) by

n∑
i=1

A+
DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
= XT

h W+
h VDR

(
t;O, Ĝ, Ŝ

)
,

n∑
i=1

A−DR∗,i,h

(
t; Oi, Ĝ, Ŝ

)
= XT

h W−
h VDR

(
t;O, Ĝ, Ŝ

)
.

Define

Υ =


∫ ∞

0 K(u)du
∫ ∞

0 uK(u)du∫ ∞
0 uK(u)du

∫ ∞
0 u2K(u)du

 .
Then

√
nh

α̂R,DR(t) − µ+(t; w0)

β̂R,DR(t) − µ′+(t; w0)

 = κ
((

XT
h W+

h Xh

)−1
XT

h W+
h VDR

(
t;O, Ĝ, Ŝ

))
,
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where κ =

(
1 0
0 h−1

)
. Then

√
nh

α̂R,DR(t) − µ+(t; w0)

β̂R,DR(t) − µ′+(t; w0)

 − 1
2
κ−1Υ−1µ′′+(t; w0)δ

d
−→

N
(
0, σ2+

DR (w0; G0, S ∗) g (w0)−1 κ−1Υ−1VΥ−1κ−1
)
.

Then
√

nh
(
α̂R,DR(t) − µ+(t; w0) − ρ+µ′′+(t; w0)

)
d
−→ N

(
0, υ+σ2+

DR (t; w0,G0, S ∗)
)
.

By applying similar arguments to α̂L,DR(t),
√

nh
(
α̂L,DR(t) − µ−(t; w0) − ρ−µ′′−(t; w0)

)
d
−→ N

(
0, υ−σ2−

DR (t; w0,G0, S ∗)
)
.

Then due to independence of α̂R,DR and α̂L,DR, it is easy to see that
√

nh (τ̂DR(t) − τ(t) − ϕ(t))
d
−→ N (0,ΣDR (t; G0, S ∗)) .

Hence we obtain the result. By defining ΣIPCW1 (t; G0) = υ+σ2+
IPCW1

(t; w0,G0) + υ+σ2−
IPCW1

(t; w0,G0)
and ΣIPCW2 (t; G0) = υ+σ2+

IPCW2
(t; w0,G0) + υ+σ2−

IPCW2
(t; w0,G0), the proof for τ̂IPCW1 and τ̂IPCW2 are

similar.

Appendix B: Details for estimation of variance of the proposed estimators

As previous section, let

Xh =


1

W1 − w0

h
...

...

1
Wn − w0

h

 ,
and let Wh+ and Wh− be n× n diagonal matrices with diagnoal elements being I(Wi ≥ w0)K((Wi − w0)/h),
i = 1, . . . , n and I(Wi < w0)K((Wi − w0)/h), i = 1, . . . , n. Let Γh+ = XT

h Wh+Xh and Γh− = XT
h Wh−Xh.

Moreover, define

σ2
DR,+ (t,w; G0, S ∗) = Var

∆I
(
T (1) > t

)
G0(T )

+

∫ T (t)

0

QT (1) (u,W; S ∗)
G0(u)

dMG(u)
∣∣∣∣∣W = w

 ,
σ2

DR,− (t,w; G0, S ∗) = Var

∆I
(
T (0) > t

)
G0(T )

+

∫ T (t)

0

QT (0) (u,W; S ∗)
G0(u)

dMG(u)
∣∣∣∣∣W = w

 ,
and QT (k) (u,W; S ∗) = PS ∗ (T (k) ≥ t|T ≥ u,W), k = 0, 1. Then by applying theory in Cho et al. (2021),
given h, the asymptotic variance of τ̂DR(t) is

ΣDR
S RD (G0, S ∗) (t) =

1
n

eT
1

(
Γ−1

h+φVV+,DR(t)Γ−1
h+ + Γ−1

h−φVV−,DR(t)Γ−1
h−

)
e1,
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where

φVV+,DR(t) =
1
n

n∑
i=1

I(Wi ≥ w0)K
(Wi − w0

h

)
K
(Wi − w0

h

)
bibT

i σ
2
DR,+ (t; Wi,G0, S ∗) (B.1)

φVV−,DR(t) =
1
n

n∑
i=1

I(Wi < w0)K
(Wi − w0

h

)
K
(Wi − w0

h

)
bibT

i σ
2
DR,− (t; Wi,G0, S ∗) , (B.2)

with bi = (1, (Wi − w0)/h)T . To estimate the variance, it is necessary to estimate σ2
DR,+(t; Wi,G0, S ∗)

and σ2
DR,−(t; Wi,G0, S ∗). By adapting approaches from Calonico et al. (2014) and Cho et al. (2021),

we compute residuals from transposed response and RD estimator. Let ĥ be estimated bandwidth by
Ludwig and Miller (2007) or Calonico et al. (2014).

êi,DR+,ĥ(t) = V̂DR,i,ĥ(t) − α̂R,DR,ĥ(t),

êi,DR−,ĥ(t) = V̂DR,i,ĥ(t) − α̂L,DR,ĥ(t),

where V̂DR,i,ĥ(t) and α̂L,DR,ĥ(t) are V̂DR,i(t) and α̂L,DR(t) with estimated bandwidth, respectively. As
can be seen, êi,DR+,ĥ(t) and êi,DR−,ĥ(t) are residuals with respect to V̂DR,i(t). By plugging in these two
quantities to (B.1), we obtain estimators of φVV+,DR(t) and φVV−,DR(t).

φ̂
pir
VV+,DR,ĥ(t) =

1
n

n∑
i=1

I(Wi ≥ w0)K
(Wi − w0

ĥ

)
K
(Wi − w0

ĥ

)
bibT

i êi,DR+,ĥ(t)2,

φ̂
pir
VV−,DR,ĥ(t) =

1
n

n∑
i=1

I(Wi < w0)K
(Wi − w0

ĥ

)
K
(Wi − w0

ĥ

)
bibT

i êi,DR−,ĥ(t)2.

We call this as plug-in approach. Another approach is a nonparametric nearest neighbor (NN) based
variance estimator by Calonico et al. (2014). We compute residuals based on “closeness” to each ob-
servation i and use them to compute variance. This approach is more robust to outliers than the plug-in
approach. We define “neighbors” in each i for V̂DR,i,ĥ(t). Let V̂DR,l+,k(i),ĥ(t) be the kth closest unit to unit
i among {Wi : Wi ≥ w0} and V̂DR,l−,k ,ĥ(t) be the kth closest unit to unit i among {Wi : Wi < w0}, respec-
tively. Then we compute residuals from the defined neighbors and estimate σ2

VV+,DR(t; Wi,G0, S ∗) and
σ2

VV−,DR(t; Wi,G0, S ∗) by

σ̂2
VV+,DR,ĥ

(t; Wi) = I(Wi ≥ w0)
K

K + 1

(
V̂DR,i,ĥ(t) −

1
K

K∑
k=1

V̂l+,k(i),DR,ĥ(t)
)2
,

σ̂2
VV−,DR,ĥ

(t; Wi) = I(Wi < w0)
K

K + 1

(
V̂DR,i,ĥ(t) −

1
K

K∑
k=1

V̂l−,k(i),DR,ĥ(t)
)2
.

From these estimators, the second method to estimate φVV+,DR(t) and φVV−,DR(t) is

φ̂
nn
VV+,DR,ĥ(t) =

1
n

n∑
i=1

I(Wi ≥ w0)K
(Wi − w0

ĥ

)
K
(Wi − w0

ĥ

)
bibT

i σ̂
2
VV+,DR,ĥ

(t; Wi) ,

φ̂
nn
YY−,DR,ĥ(t) =

1
n

n∑
i=1

I(Wi < w0)K
(Wi − w0

ĥ

)
K
(Wi − w0

ĥ

)
bibT

i σ̂
2
VV−,DR,ĥ

(t; Wi) .
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We call this approach as the nearest neighbor method. From these two methods, we can finally
derive the variance of our RD estimator. Let Xĥ,Wĥ+, and Wĥ− be Xh,Wh+, and Wh− with estimated
bandwidth. Then, the variance estimator is

1
n

eT
1

(
Γ̂
−1
ĥ+φ̂VV+,DR,ĥ(t)Γ̂

−1
ĥ+ + Γ̂

−1
ĥ−φ̂VV−,DR,ĥ(t)Γ̂

−1
ĥ−

)
e1,

where

Γ̂ĥ+ = XT
ĥ

Wĥ+Xĥ, Γ̂ĥ− = XT
ĥ

Wĥ−Xĥ,

and φ̂VV+,DR,ĥ(t) is either φ̂
pir
VV+,DR,ĥ(t) or φ̂

nn
VV+,DR,ĥ(t). Definition of φ̂VV−,DR,ĥ(t) is similar. By using

the same process, we can also estimate variance of IPCW1 and IPCW2 estimators.
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