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Semiparametric Inference for a Multistate
Stochastic Survival Model)
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Abstract

In this paper, we consider a multistate survival model which incorporates
covariates and contains two illness states and two death states. The underlying
stochastic process is assumed to follow nonhomogeneous Markov process. The
estimates of survival, transition and competing risks probabilities are given via the
methods of partial likelihood and nonparametric maximum likelihood. Our discussion is
based on the statistical theory of counting process. An illustration is given to the
data of patients in a heart transplant program. The goodness of fit procedures are
also discussed to check the adequacy of the model.

1. Introduction

The usual survival model can be viewed as a simple two-state stochastic process where
the force of transition from a transient ‘alive’ state to an absorbing 'death’ state is the
hazard rate function for the survival time distribution.

In clinical trials, however, the one transient ’alive’ state and the one absorbing 'death’ state
can often be split into two or more transient states and two or more absorbing states which
typically corresponding to occurrence of various nonfatal complications and to different causes
of death, respectively. The concept of competing risks, with each risk a potential cause of
death, can be involved in this situation. The statistical analysis of such resulting data is often
called multi-state survival analysis in the literature. Such multi-state models enable us to
study and analyse the life history data in more detail which occur frequently in practice. For
example, in medical follow-up studies, we may begin with healthy persons who are followed
to determine which of them develop a specific disease, such as coronary heart disease, how it
affects their survival, and which covariates(e.g., age, blood pressure, smoking, physical
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condition, and etc.) are important for predicting who gets the disease and who may die from
it.

In this paper, we consider a multistate survival model which contains two ‘alive’ states
and two ‘death’ states. Sometimes ’death’ may not be literal but may mean progression to
some other defined state.

During the last few decades, there has been an extensive work on the problems of a
nature similar to the present work. For example, Fix and Neyman(1951) first studied the
problem from a statistical point of view, and they introduced the concept of the net and crude
probabilities. Such probabilities and their relation compose the concept of competing risks and
are described more completely in Chiang(196la, 1961b, 1968). Other work, more closely
related to the present work is due to Sacks and Chiang(1977) and Beck(1979). Sacks and
Chiang studied the stochastic model and applied to coronary heart disease, but in the absence
of covariates. Beck investigated the model with the addition of covariates and applied to the
analysis of survival data from patients accepted into a heart transplant program. But they all
assume that the underlying transition rates are constant. Other related articles include
Kodell and Nelson(1980) who consider the model with Weibull intensity functions, Mcknight
and Crowly(1984), Dinse and Lagakos(1982), Kodell et al.(1982), Turnbull and Mitchell(1984),
and Dewanji and Kalbfleisch(1986) who all consider the model without covariates and analyse
the carcinogenesis data from survival/sacrifice experiments by the classical likelihood methods.

In this paper, we develope a multistate stochastic survival model which incorporates
covariates. We regard that the baseline intensity function is time dependent and left
completely unspecified. Thus, the present work extends the previous studies mentioned above.

In a theoretical point of view, a description of the multistate survival data as a stochastic
process has proven useful for the purpose of studying large sample properties of many
parametric, non-parametric and semi-parametric statistical procedures frequently used for
censored data. For example, Aalen and Johansen(1978) developed the method for
non-parametric estimation of transition probabilities in a non-homogeneous finite state Markov
processes, and used product-integration combined with results on counting process,
martingales, and stochastic integrals to study their small and large sample properties. For the
case of a simple two state stochastic model, Aalen(1980) suggested the additive regression
model formulated for counting processes which complements the proportional hazard model
proposed by Cox(1972). Andersen and Gill(1982) elaborated the counting process approach to
the Cox regression model. Later, Andersen and Borgan(1985) and Andersen et al.(1991)
extended the work of Andersen and Gill to Cox type regression models for the transition
intensities of the nonhomogeneous Markov process.

The plan of this paper is as follows: In Section2, we describe the illness-death model
based on the work of Sacks and Chiang(1977) and Beck(1979). we also give the expressions
of the transition probabilities via the Kolmogorov forward equations. In Section 3, we estimate
the vectors of regression parameters and the baseline integrated intensity function based on
the methods of multistate Cox’s partial likelihood and multistate nonparametric likelihood,
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respectively. We then estimate the transition, survival and competing risks probabilities. In
Section 4, we explore the asymptotic properties of the estimators given in Section 3 based on
the work of Aalen and Johansen(1978) and Andersen et al.(1991). In Section 5, as an
application of the methods, we analyse the data of patients from a heart transplant program.
Finally, Section 6 contains discussion and some concluding remarks.

2. The model

In this paper, we consider a model which describes a population of healthy individuals
who may develop a disease and later then die. In this model there are two transient states 1
and 2 and two absorbing states 3 and 4, where 1 is a  healthy state, 2 is a specific disease
state, 3 is the state of death from all causes other than the disease, and 4 represents death
due to the disease under study. An individual is said to be in state 1 if he or she is free
from the disease, or in state 2 if he or she is affected with the disease. A person enters
absorbing state 3 if he or she dies from other causes, and enters the absorbing state 4 if he
or she dies from the disease under study. We shall assume that the disease is irreversible,
so that a person entering state 2 can not return to state 1. Also, since a person can not die
from the disease without first having developed the disease under study, the transition from
state 1 to state 4 is not allowed. The transitions an individual makes from one state to
another are governed by the intensity functions. In order to incorporate covariates, we use
the proportional intensities regression model. Moreover, in order to still have a finite state
Markov process for given values of the covariates entering into the regression models for the
transition intensities, we restrict attention to the case where these covariates are
time-independent.

The model, with the intensity function for each transition, is exhibited in Figure 1.

(le(fls; Z)

dm(tIS;Z)
(213(t;Z) 61’24(”3;2)

Figure 1. An illness-death model with two transient
and two absorbing states
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Now we suppose that # individuals initially stay in state 1 and the individuals behave
independently of each other between states according to a non-homogeneous Markov process.
Let X(#) be the state occupied at time te J = [0, z] for some 7> 0, by a randomly

chosen individual with a given covariates vector Z. Then the process { X(¢), teT} is
governed by the two conditions below:
(¢) X(0) = 1, that is any individual is in state 1 at the time of diagnosis, and

(#) the 4X4 matrix of transition probabilities is given by P(s,t;Z), 0<s<t with
entries

Pi(s,,Z) = P(X(t) = k| X(s) =7, Z), (2.1)
where (j,k)e E={(j,k)eS?*|j<k}, $=1{1,2,3,4}, P;(s,t;Z) =0 otherwise. That

is, given that a randomly chosen person with covariates Z is in state ; at time s (present),
the conditional probability that this person will be in state % at time ¢ (future) is independent
of X(u), 0<u<s (past), (Markovian property). In (2.1) we note that

Po(s,t;2) = Pu(s,;Z)=1 and 3} Pu(s,t:2) = 3 Puls.t:2) = L.
Alternatively, this process can be specified in terms of the intensity functions of a transition
from state j to state % at time &

ap(t; Z) = lhn,'% % Pt t+h Z), (2.2)

where (j, H)el'=1{(,2),(1,3),(2,3), 2,4} ap(t; Z) =0 otherwise.

For the intensity function (2.2) with the basic covariates Z, following Cox(1972), we use

the log-linear form for the covariates adjustment for its mathematical convenience as well as
to avoid a negative intensity function. That is, we let

ap(t;Z) = apo(t) exp(B 2), (2.3)
where @;;o(¢) is the so-called baseline intensity function of j— k& transition and Bj is a

vector of unknown regression parameters of j-—> k& transition corresponding to the basic
covariates vector Z.

Alternatively, it is convenient to write @;(#; Z) not as the form of (2.13) but as
ai(t;Z) = apo(t) exp(BT Z ), (2.4)
where B= (B, , B,,)T is one vector of regression parameters containing all the different

parameters in the B, vectors and hence, not depending on the type of transitions, and Zj
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is a vector of type specific covariates given by the basic covariates vector Z. The models
on the form of (2.3) can always be written as (24) if in the entire model (i.e. for all types

together) there are P regression parameters to be estimated, then each of the type specific
covariate vectors Zj should be made p-variate possibly by including extra components equal

to zero. We have been chosen to do so because the formulations and arguments of the large
sample properties are simplified in this case.

Let A(#;Z) be the 4X4 matrix of the integrated intensity functions

t
Ap(t;Z) = fo a@p(u; Z)du , where (j, k) €E. And let the base-line integrated intensity

L
function be Ajo(t) = J; @jro(u)du. Then the integrated intensity functions becomes

Ap(t,Z) = Ajko(t)eXD(BTij), (,keE (2.5)
We also define

a;(t;Z) = — ;Zja,-k(t;Z),j=1,2 (b eE (2.6)
and

A(t:Z) = — B A 2Z),i=1,2 (B €E 27

Then the relationship between the intensity functions and the transition probabilities can be
found by the Kolmogorov forward equation:

P(s,s;Z) = 1,

2.8
P(s,dt; Z) = P(s,t-;Z)A(dt; Z)
The solution to the equation (2.8) can be expressed in terms of product integrals as
P(s,t,Z)= P (s_,]{I+ dA(u;Z)}, 2.9

where P denotes the product integral(e.g. Aalen and Johansen(1978), Gill and Johansen(1990)).

Although the expression (2.9) provides general formula for the transition probability matrix,
it may also be of some interest to derive explicit expressions for each transition probability

P;(s,t; Z), where (j,k)€ E. From the equation (2.8), we get the following equations:
dP,(s,t,Z) = — Py(s,t-; Z){dAp(t; Z) + dA(t; Z) ]}, (2.10)
dPy(s, t;Z) = Py(s,t-;Z)dAp(t Z)
— Pp(s, t-; ZXdAn(t; Z) + dAu(t:Z) }, (2.11)
dP;(s, t; Z) = Py (s,t-; Z)dA(t,Z) + Pyp(s, t-; Z)YdARx(E Z), (2.12)
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dPu(s,; Z) = Pyp(s, t-; Z)dAy(t, Z), (2.13)
dPy(s,t;Z) = — Py(s,t-; Z){dAx(tZ) + dAy(t: Z) }, (2.14)
dPy(s,t; Z) = Py(s,t-; Z)dAx(H Z), (2.15)
dPy(s, t;Z) = Pp(s,t-; Z)dAy(t;, Z). (2.16)

Using the initial condition P;s(s,s;Z) = 83, where &y is the Kronecker delta, and solving

the equations (2.10) - (2.16), we obtain the following results:

Pu(s,t;Z) = P (s, ] {1_ dAlg(u,Z) - dAlg(u;Z)}, (2.17)
Pu(s,t;Z) = f( Puls,u=; Z)dAp(u; Z) Pp(u, t: 2), (2.18)
Pyu(s, t;Z) = PP (s,t:Z) + PP (s, 1, Z), (2.19)
where

PR(s,t:2) = |  Puls,u-;2)dAn(u;Z) (2.190)

PR(s,t:2) = [ Pu(su-; 2)dAn(u: 2), (2.195)
Pu(s,t,Z) = g t]PIZ(S,u';Z)dAm(u;Z) , ‘ (2.20)
Pzz(s,t;Z) = P (s,,]{l—dAzg(u;Z)—dz424(u;Z)}, (2.21)
Py(s, t;Z) = " t]Pzz(s,u—;Z)dAm(u;Z), (2.22)
Pyu(s. t;Z) = f( (Prls.u-: Z)dAu(u; 2). (2.23)

From the above equations (2.17) - (2.23), For a person with the covariaes vector Z who
starts in state 1 at time 0, the survival probability is
S(t;Z) = P(0,1Z) + P,(0,t;,2), (2.24)

where P),(0,¢;Z) is the probability that this person is still in state 1 at time ¢ and
P, (0,¢t; Z) is the probability that this person is now in state 2 at time # And the death
probabilites are P9 (0,#2Z), P#(0,#2Z) and Pyu(0,t;Z), respectively, where
Pl(g})(O, t; Z) is the probability that this person has been dead at time ! from other causes

without having developed the specific disease under study, and Pl(g)((), t; Z) is the probability
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that this person has been dead at time ¢ from other causes after having developed the

disease, and P);(0,¢; Z) is the probability that this person has bee dead at time { from the

specific disease.

On the other hand, in the competing risks theory, there are several probabilities of dying
such as crude, net, and partial crude probabilities due to a specific causes of death (e.g.
Chiang, 1968, pp. 242-247). Since the present model allow the covariates, these probabilities
are defined for a particular set of covariates value. The cause-specific death transition

probabilities P (0, ¢ 2), P#P(0,t;Z) and Py(0,¢; Z) are identical to what are called the

crude probabilities.

In order to obtain the net probabilities that are uniquely identified, the competing risks of
death are assumed to act independently (e.g. Tsiatis(1975)). The net and partial crude
probabilities may be useful in estimating certain death probabilities which cannot normally be
observed but are calculated through their relationships with the crude probabilities. For
example, it may be meaningful to ask in the present model how the probabilities of dying is
changed if the risk of dying from the disease(state 2) is eliminated. Since the present model
includes only two death states, this probability is a net probability as well as a partial crude
probability given by

¢
QP .6:2) = [ Qu(0,u-32)dAn(u; 2), (2.25)

¢
where Qp(0,,2) = fOPu(O,u-;Z)dAlz(u;Z)sz(u, t,2Z), (2.26)
Qu(s,,Z) = P a{1— dAzg(Z{;Z)}. (2.27)

3. Estimation

The transition intensities of the Markov process also appears in the compensator of the
counting processes recording each type of transitions. Let N=

{Ny;(¢);teT, (j,k)el', i=1,---,n} be the multivariate counting process for the model
considered in this paper. That is, each component N;(#) represents the number of direct
transitions from 7 to k& ( (j,k) I ) observed for individual : with the covariates vector Z,

in the time interval [0, #].

Define Y;(t)=1I(x.:-)=j, where I(4) denotes the indicator function of a set A. That
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is, Y;(¢#) =1 if the individual number : is observed to be in state i just before time &
Y;(¢t) =0 otherwise. Thus {Y;(¢);teT,j=1,2,i=1,,n} is a predictable indicator

process. Then under the assumption of independent censoring mechanisms (e.g. Andersen et
al. (1988), Kalbfleisch and Prentice (1980, pp 119-122), we may decompose Nj;(#) into its

compensator A ;(¢) and a local square integrable martingale M, (¢) with respect to Fi
where Fi: = 0{X;(s); 0<s<¢, teT} is the smallest o-field making all of random
variables X;(s), 0<s< 1, measurable. Or equivalently we may denote
Fi = G{N;ﬁ(u), Yi(u+), Z;, G, k)el'} (3.1)
since the initial distribution of X;(#) is degenerate at time ¢=0. Thus, we may write
Nyi(t) = Api(t) + M (t) (3.2)
(This is the Doob-Meyer decomposition of the local submartingale Nj, ).
Under the regularity conditions (e.g. Aalen(1978, Section3.2) A;;(#) is absolutely continuous,

so that there exists predictable process A= {A(¢);te T, ((j,k)el,i=1,--,n} such that

¢
Aw(t) = [ A(w)du. (3.3)
0 )
Thus, (3.2) may be expressed as
ANy () = A3 (8)dt + dMy(t). (34)
Furthermore, we have
Ault+) = lim P(Nu(t+h) — Ni(8) | F 1), 35)

where F, = \/1 F ! which is the smallest o-field containing F ;.
X

The expression (3.5) may also informally be written as
Awi(t)dt = P{dNu(t) =11F, }, (36)
where dNy;(t) denotes the increments of Ny (f) over a small time interval of length df
around time . Thus, provided that the underlying stochastic process is Markovian, we have
Aii(t) = Yi(t)aw(t; Z)). 3.7
For the proportional intensities regression model as given in (2.3), we write
Awi(t) = Yi(B)awo(t) exp(BL Z). (38)

Alternatively, as given in (2.4), we may write
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Ai(t) = Yi() auo (t) exp(BT Z ) . (39)
Thus, the expression (3.2) can be written as
t
Ny(2) = foa,'ko(u)exp(BTZ,-k;) Yi(u)du+ Mu(t). (3.10)

Summing (3.10) over all 7=1,2, -, n, we have

Na() = [ auo(u)SP (B, u)du + M), (3.11)
where Nu(t) = X N(h), (312)
Mu(t) = 35 Myu(2), | (3.13)
and SO(B.1) = 2 exp(BTZ) Y. (3.14)

We note that N;(#) represents the total number of direct transitions from ; to % observed
in [0,1], and M;(¢) is a martingale with mean zero, and ijeO)(B, t) represents the sum of

the quantities exp(87Z;) over the risk set in state j at time ¢.

On the other hand, (3.11) may be written as

dNz(t) = SV(8,t) dAj(t) + dM;(t), (3.15)
where
dAjko(t) = a,-ko(t)dt. (3.16)

Since dM;,(t) represents a zero mean 'random noise’ component, a natural estimator of

A (), the baseline integrated intensity function, is

Auo(t;B) = fﬁtm dNj(u). (3.17)

However, one may have Y;(#)=0 for some ! and in order to take care of this
possibility, we introduce the indicator Ji(¢) = I(y,(1)=0), Where Y;=Y;;+ Y3 +-+ Y,
and define the estimator of Aj¢(¢) formally by

Au(t:B) = [

(8 %) dNy(u). (3.18)

On the other hand, the estimator of A;¢(#) can also be obtained from nonparametric
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maximum likelihood for N, we may interpret dN(#) as conditionally independent
multinormial or Poisson distribution depending on whether Ay (¢ Z;) is discrete or
continuous. That is, given F,_, {dNp(t);(j,kel,i=1,-,n} are independent and
multinomially { Y;;(¢), dA;;(¢; Z,)} distributed or independent Poisson { Y;;(#)dA (¢ Z;)}

distributed. Thus, under noninformative censoring the ‘multinomial’ likelihood for N can be

written, in terms of product integral, as

1—dN_(t)
Le= P e { (j];v[er zlill(in(t)dAjki(t))dNﬁ(t) (1 h (i%:er ZldAﬂd(t)) } (3.19)
where N (t) = (jger Zleki(t) and dNp(t) = Ny (t) — Np(t-).
Since dA(t;Z;) = dAje(t)exp(BT Z ), (3.19) becomes
Lo = Poos | JL, T (¥i()dAu 0 exp(87 Z) ™"
(1= 3 dAwe(0)SP(8,0) "), (3.20)

For continuous case of Aj(¢), the ‘multinomial’ likelihood (3.20) can be expressed as the

"Poisson’ likelihood

L, = 11;[;{ (j,]k_)[EI‘ ﬂl (dAzo(t)exp(BTZ4))

1=

x exp{ -2 fOtS,-,ﬁ(’)(B,u)dA,-ko(u)}. (3.21)

dNu(t) }

We note that the product over #= 7T is a product over disjoint intervals. So (3.20) and (3.21)
reduce to the finite products over ¢ for which N (#) jumps at time ¢, ie. dNy(¢)=1;

elsewhere dNj;(t) =0.

Given the value of B, maximization of (3.20) or (3.21) with respect to dA(¢) leads to

~ dN(t)
dApo(tB) = <o a (3.22)
Thus, we again estimate A ;q(¢) by (3.18).

Now we want to find the estimator of the regression parameters vector f. If we substitute
(3.22) into (3.20) or (3.21), we obtain the following partially maximized (partial) likelihoods

(likelihood profile) only depending on A (assuming no ties) :
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Li= L(B,0)XP e { T (aNu() ™ (1~dnN_ ()" ") (3.23)
or
Li= L8, ox [ TI aNa(t) ™ exp(= N (), (324)
where
_ Yi(t) exp(B7Z;) \ “
L(g.o= L (jl;)ler IZII( : SOB.D : ) (3.25)

which is the multistate Cox partial likelihood. The estimation of B can be based on (3.25),
or equivalently on the logarithm of (3.25) such that
log L(B,t) = C(B,7)

= (,-%L,{ z}l fOTBTZ,H dNy(t) — fotlogS,-faO)(B,t)dN}k(t) }. (326)

We denote ’ﬁ for the value of A which maximizes (3.26) (if such a value exists). Usually

the estimate ’B may be obtained by the Newton-Raphson method as the solution of

U(B,r)=*§7§C(B,r)=0, where U{B,r) is given by (4.8). We then estimate

Ajpo(t) by A w0 (2, /B) which is obtained from substituting B into (3.18).
Based on the preceding results, we now estimate the transition probabilities of the

non-homogeneous Markov process given in Section 2. To do this we let ;4\ (t; Z) be the

4 x4 matrix of the estimated integrated intensity functions A ,(t;Z), (j, k) €E, where

Aut;Z)= A\jko(t)EXp(lkTij), kel (3.2

and

Py

A t;Z)= — ;ﬁjk(t;z), i=1,2. (3.28)

We then estimate P{s, ¢;Z) in (29) by
P(s,tZ)=P {1+ dA(u;2)). (3.29)
The estimate (3.29) is meaningful as long as 1+ d?l\j,-(t; Z)=0, j=1,2.

The each estimate A #(t;Z) is a step-function with a finite number of jumps in (s, ¢].

Thus estimate in (3.29) is a finite product of matrices. If one or more transitions are

observed a at time u (allowing for ties), then the contribution to (3.29) from this time point
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is a matrix I+ A z(u;Z), where AK(u;Z) is the 4X4 matrix with entries (7, &)

equal to AA(u;Z) = A:‘l\iko(u;ﬁ)exp(%TZ,-k), (j,kB) I and entries (j,7) equal to
AA(u;Z) = — ;),Aﬁik(u;z)y 7=1,2 , where
) AN(¢)
A . . —-— RN )
Apo(u; B) SU(B.0) (3.30)

For the computation of (3.29), let 4 <{f<---<t, be the times of all observed transitions

between s and { Then P(s,t;Z) is estimated by

Pst:z)= J1{1+aA0:2)), (331)
with
1+ a4, (4:Z) MAu(t5Z) AAu(t:Z) 0
I+4A(;Z) = 8 1+ AAOZZ“*"Z) AA%I(t"‘Z) AA%étf;Z) (332)
0 0 0 1

The expression (3.31) provides a simple algorithm for the ecomputation of (3.29). It may,
nevertheless, be illustrative to give the explicit expressions for the elements of ﬁ(s, t;Z) by
substituting A A #(u;Z) into dAu(u; Z) in the forms of (2.17) - (2.23). Specifically we

have the following forms:

. — _ exp(%Tle)Ale(ti) _ exp(%TZB)ANB(t,-)
pll(s, t; Z) tf=]:l{1 ng)(’b' tl) Sl(g)(/B’ t,) }, (333)
exp(BTZ5) ANy (%)  exp(BTZy) AN, (E)
; = - ~ - ~ ’ 3.34
Puls, t:Z) 'ljl{l Eews P } (3.34)

C Y = = _ exp(B7Z15) AN (#:) _ exp(BTZ,3) ANy (1) )
Patsti2)= (1 (1 SO Bt SO (B 1)
y exp(B7Z ) ANy ()
S®CB, 1)
eXD(,BTZZ:;)ANz;(th) eXD(,I\gTZm)ANz‘;(fh)
_ 3. _ 4 3.35
S 2 (1 S (B, t) St (B, 1) }} .
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(3.36)

Pu(s,t:2) = P¥(s,t:2) + PP (s, 1, 2),
where
D s 7Y — 3 _ exp(BTZ 1) AN, () _
PYaan = E{]L (1 S (B.t)
exp(B7Z13) ANy (4:)
(0)( B, ¢ ) '

exp(B7Z3) AN (1) ]
(0)(13 )

(3.36a)

PP(s,t:2) = 2;[ it{hﬁ‘ [1_ exp(B7Z13) ANy (#) _
Y S A e

(0)( B, ty)

N exp(B” Z ;) ANy, (2)
(0)(5 t)

eXD(ﬂTZz:a)ANza(th)

eXD(’BTZm)ANm(th) )
(0)( B, ty)

<L, (1_ sO(B. &)

y exp(’B Z ) ANy (t;) }

(0)(Bt)

exp(BTZp) ANp ()

exp(B Z%)AN%(th)]
(0)(3 th

(3.36b)

Puls,t:2) = g[g{ﬁx (1— S (B, 1)

y exp(/[? Z ) AN, (t)

_ _exp(BTZ3) ANy (1)) ]
S®CB. 1)

(0)(3 )
. Tf (1_ exp(B"Zy)ANx ()  exp(B” ZznANu(th)]
R=T+1 Sz(g)(lk,th) S CB. 1)
» eXp(B(o)Z(MB)Atl;fm(fi) ] (3.37)
' . f— eXD(’BTZZS)AN%(th) exp(/BTZM)ANM(th)
Pu(s, t:Z) = Z:;{fo 1- (0)(3 ) B Sg(f)(%.th) ]
exp(B7Z5) ANy ()
TSP (B } o
L - exp(BTZ»)ANg(8,) exp(B7Zy) ANy (1)
Pu(s, t;2) = g{:ﬂt (1‘ SO(B. 1) - S’ (B.th) ]
y eXD(IBTZ%)ANM(ti) } (3.39)
S%(Br tl)

The above expressions (3.33)-(3.39) may be used as an alternative to the direct application
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of the form (3.31).

4. Asymptotic Properties

For the asymptotic properties of 79 and A w0 (2, /B), we introduce the following notations
as in Andersen and Gill(1982). Let

SP(B,t) = ; SP(B,1), G.Bel @.1)
B
and
SP(B.t) = aBz S©8,1), GBel (4.2)

Then we have the p-vectors

SP (8.5 = 3 Ziwexp(BTZ,) Yi(8), (B <L, 43)

and the pXp matrices

SPB.D = 2 Zu®en(BTZi) Yi(0), GBeI, 4.9)
where @ ®% = aa’ for any vector a. We also define the p-vector
E; (B, t) = —%:((Tétt)l (45)
and the pXp matrix
Va(B,8) = {Vuu(B,t), b 1=1,-,p}
= __—_-((02))((5 tt)) — Eu(B8,t)%% (4.6)

With the above definitions, the vector of score  statistics U(B, )=

(U (B,7),,U,(B, 1)), where U,(B,7)= C(B,7), h=1,-+,p can be written as

d
0B+
U(B, T) = G EI"{ 121 j(;rzjkidNiki(t) - forEjk(B, t)dN]k(t) } (4.8)

And the matrix of second-order partial derivatives of C(B8,7) is — I(B, 1), where
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I(B.7) = (;,%"ep fo Vi(B, 1) dN(t). (4.9)

Then, from the standard likelihood theory, we find that under certain regularity conditions
(e.g. Andersen and Gill(1982, #1105, 61110 ), Vn (B — By ), where B, is the vector of true
parameters, is asymptotically multivariate normally distributed with mean zeroc vector and a
covariance matrix #1 ~!'(B,7) which may be estimated consistently by #nI '1(%, 7). From

this result, it follows that for a simple hypothesis Hy: 8= 8,, the Wald test statistic

Q= (B—B)TIB,O(B- 8y (4.10)

is asymptotically xz-distribution with p degrees of freedom. Inferences can also be based on
the score test statistic and the Cox partial likelihood ratic test statistic, i.e. under the same

regularity conditions as in the Wald test statistic, for testing Hjy: £= B,

Q= U(Boy,t) "I (By,7) U(By, ) 4.11)
and

Q= 2(C(B,7)— C(By,7)) (4.12)
have the same asymptotic x%-distribution with p degrees of freedom.

Next, for the asymptotic property of A wo (2, ’B), under the same regularity conditions as

in Andersen and Gill(1982, £1110), each process \/;z(A\ wolt, ,B) — Ao (t) ) is asymptotically

distributed as a Gaussian process with mean zero, independent increments and the estimated
variance function

{f’ dNy(u)
0

50z T HEM BT B OH(ED | (413)

where
SP(B.w)
S8, u)}

Hy(B 5 = — fo'{ > dN (). (4.14)

On the other hand, for the asymptotic property of the each transition probabilities
Py(s,t;Z), (j,k) €E, we find that from the asymptotic properties of (79, Aot :‘3)) via

the functional delta method, \/71(15 #(s, t;Z) — Pu(s,t,;Z)) is asymptotically distributed as

a Gaussian process with mean zero and the estimated variance function V,+ V,, where
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Vl = gl j:p,‘h(s,u;Z)z{plk(u, HLZ)— Phk(u,t,Z)}z
{(EXD(Z;'I/B)}2

X]h(u) S}(,?)(’B'u)z thl(u)y (415)
and
P, = QT(s,t, BZ)I (B, 1) Q(s, 8, B: 2), (4.16)
and where
t
Q= [ T Puls,u: 2)d Wi(w) Puu, t;2), 4.17)
with  Wu(t) = exp(B7Zy) f' (Zu= E(g)’(f'”))]”(”) dNu(u), for h*i, (418)
0 Su (B, u)
and W (t) = — Z_:,I W, (eg. Aalen and Johansen(1978) and Andersen et al.(1991)).

Therefore, we may use the above result to set approxXimate pointwise confidence limits for
each transition probability.

5. An application

In this section, we illustrate the results of applying the illness-death model{with two alive
states and two death states) to the survival of patients from a heart transplant study. The
data used here came from the Stanford Heart Transplantation Program and were described in
detail in Clark et al.(1971).

In summary, patients are admitted to the program after it is decided that the patient is not
likely to respond to other forms of therapy. Then a donor heart, matched on blood type, is
sought for a patient. This search has taken from a few days to almost a year. Thus, some
patients die before a heart is found, while who receive a transplant may die from the rejection
of the new heart from other causes. Sometimes, several patients are matched on blood type
for a given donor heart. Then other criteria such as tissue typing or absence of pulmonary
infection are used to choose the recipient of the heart. In general, no serious bias were found
from this selection procedure. All patients(except two who are lost) were followed from their
entrance into the program to their death or to the end of the study on April 1, 1974. The first
patient was entered the program on November 15, 1967, and the last on March 22, 1974.
During this period, 103 patients were entered the program. Of these, four patients have
improved enough while waiting for transplant, and were then ‘deselected’ and followed as
long as possible(two have been lost to follow-up and two have died). These four patients are
treated like other patients who were not transplanted. Also one patient failed the first
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transplant at 50 days but was immediately retransplanted and survived another 15 days more.
For the purpose of present analysis, this patient is considered to have died by rejection at 50
days.

On the other hand, four of the transplanted patients were not tissue typed and are excluded
from the analysis. Thus, the survival of 99 patients has been analyzed here. Of these 99
patients, the number of patients corresponding to each transition is as follows:

Transition Number Transition Number
1—1 4 1—-2-2 24
1—3 30 1—-2—3 12

1-2—4 29

Many authors have analyzed the survival data of patients in the Stanford Heart
Transplantation Program: among these are Gail(1972), Turnbull et al.(1974), Crowley and
Hu(1977). Beck(1979), Kalbfleisch and Prentice (1980, Ch.,5), and Aitkin et al.(1983). In
particular, Crowley and Hu(1977) evaluated the effects of several covariates on survival using
the regression model of Cox to see for which variables, if any, transplantation is likely to
prolong survive. Beck applied a similar stochastic survival model to the present work, but he
restricted assumption to the case where the underlying intensity functions are constant. Aitkin
et al. suggested various parametric models to examine the effects of covariates on survival.
They considered pretransplant and post transplant survival separately. However, the effect of
competing risks for the transplanted patients was not addressed in their work. That is, the
intensity function and the effect of the covariates may differ depending on whether the patient
dies from a rejected transplant of from other causes. They also mentioned residuals in
connection with parametric model checking but indicated that they did not find them to be
particularly useful.

In order to evaluate this survival process of the heart patients, the illness-death model in
Figure 1 is used, where in this situation, the states are: 1, accepted into the program
(nontransplant); 2, received a new heart (transplant); 3, died from rejection of the donor heart
(rejection); and 4, died from any other causes. We note that this model allows to avoid the
problem of changing covariate values at a random point in time (as opposed to Crowley and
Hu(1977)), and to analyzed the data to be studied in one analysis that permits the death of
transplanted patients to be examined by cause of death (as opposed to Aitkin et al.(1983)),
and to let the underlying intensity functions need not to be specified (as opposed to
Beck(1979), important in the present case because of difficulty in finding a parametric hazard
with an adequate fit to the data.

The model used here has the underlying intensity functions auo(¢), (j, k) €I. Also

associated with each patient is a vector Z, of covariates. The covariates used on survival of
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patients not transplanted are age (in years) at acceptance into the program, previous
open-heart surgery (1=yes, 0 =no). The covariates for transplanted patients are age at
transplant, previous open-heart surgery, calendar time at transplant (in days from 10/1/1967),
waiting time (in days) to transplant, and three measures of the degree of the match to which
donor and recipient are mismatched for tissue type. The first of these is the number of
mismatches which is the number of donor alleles with no match in the recipient (1 through
4). The second is a dichotomous mismatch score on the antigen HLA-A2 (l=donor has
HLA-A2 and recipient has neither HLA-A2 nor the similar HLA-A28, O=otherwise). The third
is a continuous mismatch score derived from antibody response of pregnant women by
Charles Bieber of Stanford University which ranges between and 0 and 3.05 in this data.

An initial model has been fitted for which all covariates are included. Solving U(B8,7) =0

in (48) and using (4.9), the estimates of the covariates coefficients and their estimated
standard errors are given in Table 1(a). It is clear that several of the covariates have
relatively little effect on survival of patients and should be eliminated. After removing
insignificant covariates from the initial model, the final model has been fitted and 1is given in
Table 1(b). From this table, we see that the age at acceptance into the program is only
shown to be significant covariate for both 1—2 and 1—3 transitions. For 2—3 transition,
calendar time of transplant is shown to be the only significant covariate. For 2—4 transition,
age at transplant and the continuous mismatch score are shown to be significant covariates.
In order to check the model fit, the residual plots for the final model were shown in Figure 2
and indicates that the model fits data well overall sense.

On the other hand, the average values of the covariates of all individuals were age at
acceptance into the program, 44.63 years; age at transplant, 4563 years; calendar time of
transplant, 1346 days; and mismatch score, 1.1646. Using these values in the final model the
estimated survival functions from the time (in days) of acceptance into the program for an
individual with and with no previous surgery were shown in Figure 3, respectively. For
example, the survival probabilities to 500 and 1,000 days for an individual with previous
surgery are 0.315 and 0.271, respectively. And the corresponding survival probabilities for an
individual with no previous surgery are 0.445 and 0.307, respectively. Thus, we see that the
individuals with no previous surgery have slightly the higher survival probability than the
individuals with previous surgery, although the previous surgery does not seem to be a
significant covariate in Table 1. The estimated transition probabilities of 1—3(directly), 1—3
(via state 2) and 1—4 based on Model 2 with no previous surgery are shown in Figure 4.
From this figure, we see that during initial period, 1—3(directly) is the most critical
transition for the death of a patient, but after 1,000 days the main death of the patients is due
to 1—4 transition.

The competing risks probabilities can also be calculated. The net probability is given by
eliminating the risk of death from rejection. Using the average values of covariates, the
estimated net and crude probabilities are shown in Figure 5. For example, the net probability
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to 500 days for a patient is 0.08 and the total crude probability via state 2 is 0.22. Therefore,
if death by rejection from receiving a new heart can be reduced, the death probability of a
patient may be reduced considerably provided that the independent risks of death is assumed

and the model fits.

Table 1. Covariates Estimates and Standard Errors in the Models

(a) Model 1
Transition Covariates Estimates SE P-value
Age at acceptance 0.0324 0.0158 0.0408
1-2 Prior surgery -0.4581 0.3245 0.1580
Likelihood ratio test = 6.22 on 2 df, 0.0446
Efficient score test =612 on 2 df, 0.047
Age at acceptance 0.0475 0.0205 0.0205
1—3 Prior surgery 0.9333 0.6285 0.1376
Likelihood ratio test = 822 on 2 df 0.0164
Efficient score test =752 on 2 df 0.0233
Age at transplant 0.015213 0.03712 0.682
Calendar time -0.000823 0.00054 0.127
Waiting time -0.001365 0.00698 0.845
93 Prior surgery -0.427719 0.82431 0.604
# of mismatches ~-0.824335 0.53987 0.127
HL-A2 -0.800574 1.19206 0.502
Mismatch score 1.026609 0.71197 0.149
Likelihood ratio test =116 on 7df 0.114
Efficient score test =126 on 7df 0.0832
Age at transplant 9.62e-02 0.03188 0.00254
Calendar time -7.35e-05 0.00038 0.84661
Waiting time -8.86e-03 0.00761 0.24432
954 Prior surgery -9.00e-01 0.63374 0.15540
# of mismatches -4,81e-02 0.22884 0.83354
HL-A2 -3.17e-02 0.57098 0.95568
Mismatch score 1.15e+00 0.47838 0.01631
Likelihood ratio test = 269 on 7 df 0.000341
Efficient score test = 237 on 7 df 0.0013
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(b) Model 2
Transition Covariates Estimates SE P-value
Age at acceptance 0.0324 0.015.8 0.0408
1-2 Prior surgery ~0.4581 0.3245 0.1580
Likelihood ratio test = 6.22 on 2 df 0.0446
Efficient score test = 6.12 on 2 df 0.047
Age at acceptance 0.0475 0.0205 0.0205
1-3 Prior surgery 0.9333 0.6285 0.1376
Likelihood ratio test = 822 on 2 df 0.0164
Efficient score test =752 on 2 df 0.0233
Calendar time -0.00106 0.000493 0.031
2—3 # of mismatches -0.86151 0.550916 0.118
Mismatch score 1.01946 0.711751 0.152
Likelihood ratio test = 106 on 3 gif 0.0141
Efficient score test =116 on 3 df 0.00872
Age at transplant 0.101 0.0322 0.00168
2—4 Prior surgery -0.935 0.6218 0.13285
Mismatch score 1.164 0.3999 0.00361
Likelihood ratio test =25 on 3 df 1.55e-05
Efficient score test =227 on 3 df 4.68e-05
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Figure 5. Competing risks probabilities

6. Concluding Remarks

In this paper we have used a Cox regression model to incorporate the covariates in a
multistate stochastic survival model. We have seen that the multistate Cox regression model
provide a flexible frame work for the study of the effects of various covariates on several
transition rates and the important biological insight may be gained from the analysis of such
a model which may have been overlooked by merely considering simple survival models.

However, in this paper we have only concerned with the non-homogeneous Markov process.
In fact, we may envisage a Cox regression model for the semi-Markov process, and then we
may want to develope methods of distinguishing between the Markov and the semi-Markov
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processes.

In conclusion, the method of analysis given in this paper should be looked upon as an
advantage of how the results of Aalen and Johansen (1978) and the generalization of these to
the regression context(cf, Andersen(1988); Andersen et al. (1991)) can be carried out to
evaluate the survival, transition and competing risks probabilities when the intensity function
of an individual for each transition depends on the covariates. Finally we hope that the
results in this paper would be useful to a refined analysis of data arising from a clinical trial
such as the Stanford Heart Transplantation Program considered.
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