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Posterior Consistency of Bayesian Inference of Poisson
Processesl)

Yongdai Kim?2)

Abstract

Poisson processes are widely used in reliability and survival analysis. In particular,
multiple event time data in survival analysis are routinely analyzed by use of Poisson
processes. In this paper, we consider large sample properties of nonparametric
Bayesian models for Poisson processes. We prove that the posterior distribution of the
cumulative intensity function of Poisson processes is consistent under regularity
condtions on priors which are Levy processes.
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1. Introduction

Interest in statistics inference for Poisson process has grown rapidly in the reliability
engineering and survival analysis ever since Ascher (1968) proposed the use of the Poisson
process as a realistic tool of modelling more complex reliable system suitable for statistical
analysis. The parameter which characterizes a Poisson process is the cumulative intensity (or the
derivative of it called intensity rate). Early approaches are parametric in nature, and it is
assumed that the cumulative intensity, or the intensity rate, is of some linear or parametric form
(Brown 1972, Lewis 1972, Snyder 1975). A Bayesian parametric approach was considered by
Clevenson and Zidek (1977) who assumed a linear intensity rate, and by Grenander (1981) who
assumed that the cumulative intensity is a step function. The Bayesian nonparametric approach
was discussed by Lo (1982) and Kim (1999).

In contrast to the construction of suitable priors and their computation, theoretical properties of
the posterior distribution of the cumulative intensity have received relatively little attention. Since
Freedman and Diaconis (1986) described a possibility of posterior inconsistency when the
parameter space is large, many researches on the issue of posterior consistency have been done
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(Barron 1988, Barron et al. 1997, Ghoshal et al. 1998, Shen and Wasserman 1998, Kim and Lee
2001). However, posterior consistency of the Poisson process model has not been considered yet.
In this paper, we consider the issue of posterior consistency for the Poisson process with Levy
processes as priors. We prove that under certain conditions the posterior distribution is consistent.

The paper is organized as follows. In section 2, the model is stated and theories on Levy
processes are reviewed. In section 3, the main theorem for the posterior consistency is given
with regularity conditions on priors and its proof is given in section 4.

2. The model and Levy processes

A stochastic process N={N(D:t=[0, )} is called a Poisson process with cumulative
intensity A (a nondecreasing function with A(0)=0) if N is a counting process and the
process M= {M(H = N(H— A(¥), t=[(, )} is a martingale with respect to {T,} where T,is
a sigma filed generated by {M(s),s=[0, 1}.

Remark. The standard definition of the Poisson process is that N(.) is an independent
increment process and for each # MN(#) is a Poisson random variable with mean A(H.If A is

continuous, our definition is equivalent to the standard definition, but they are not the same
otherwise (see Jacod and Shiryaev 1987 for details).

Suppose N, ...,N, are iid. Poisson process with cumulative intensity A. For prior

distribution of /1, we consider a Levy process. As is well known, any nondecreasing Levy
process is a sum of a deterministic function and a jump process, and we assume that the
deterministic function vanishes elsewhere. Note, that most of practically important processes such
as beta process (Hjort 1990) and gamma process (Lo 1982) are such Levy process. In the

remaining of this section, we review basic facts of Levy processes as priors of A.

Note that not all Levy process can be prior distribution of A since 4A(# should be bounded
by 1. This is because the Poisson process is defined by the martingale argument (see Andersen
et al. 1996 for details). In spite of this disadvantage, we use the definition of the Poisson process
via the martingale argument since the posterior distribution is given in a very nice form, which
makes it possible to study large sample properties of the posterior distribution.

Kim (1999) uses the following characterization of Levy processes whose jump sizes are
bounded by 1. For any given Levy process A(# on [0, o) with 0<4A(#) <], there exists a

unique random measure g on [0, o) x[0,1] such that
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A= f[o o (5, 2. 1

In fact, u is defined by ([0, f] %[0, «]) = SZStI(AA(s)Su) for all t=[0,o) and »=[0,1].

Since #¢ is a Poisson random measure, there exists a unique o-finite random measure vy on
[0,90) x[0,1] such that

E(u([0, %[0, «])) = v([0, t]1 [0, «]). 2)

Conversely, for a given o-finite measure v satisfying - 1]1/(61'3, dx){oo for all £0,

there exists a unique Poisson random measure which satisfies (2) and so we can construct a
Levy process A through (1). Conclusively, we can use v to characterize a Levy process /. We
call v the Levy measure of /. Details about Levy proceses and Poisson measure can be found
in Kim (1999) and Kim and Lee (2001).

For a given Levy process /1 with Levy measure v, we can easily calculate mean and variance
by the following equations (Kim 1999):

EAH) = | ’ fo A ds, dv) 3
and
vakam) = [ [ U ds, d) — 3 fo La(s, dn))? @

For a prior distribution of the cumulative intensity A, we assume that A is a Levy process

with Levy measure v. Further, we suppose that v is given by

W([0, %[0, u]) = fotfoufs(x)dxds. ®)

Then the posterior distribution of A given (Nj,...,N,) is again a Levy process with Levy

measure V> given by

P10, Ax10,6D) = [ ["(1-2) "fi()duds N

+ fled T [FNO1-0 "N 9 ds gy AV (9

where N = Z:,Ni and
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e (s)= j:xAN,(s)(l — ) n—AN,(s)fs(x) .

The proof is in Kim (1999).
3. Main results

In this section, we give sufficient conditions for the posterior consistency of /A when the
prior is a Levy process. Posterior consistency means that the posterior distribution of A

converges weakly to the point mass at A® on D[0,7] for all >0 if Ny,...,N, are iid.

Poisson processes with the common cumulative intensity A°. Here, D[0, r] is the set of right
continuous functions with left limit existing equipped with the uniform metric. Assume that

1
f{(x) in (5) is given by fs(x)=*?1?g$(x)/10(s) where fogt(x)dx=1 for all ¢>(. Assume that

Ao(® is bounded and positive on (0, @),

For the posterior consistency, we need the following two conditions:

(C1) SUD (g, w), zef0,11(1 — 2) g x)< 0
(C2) there exists a function A(f such that %sup 10, )|@Lx) —h(Hl=0 and

0< lnf tE[0,00)h( t)s Sup te[()‘oo)h( t)< OO_

Theorem 1. Suppose A" is continuous. Under (Cl) and (C2), the posterior distribution of
A given (N, ...,N,) is consistent.

The conditions (C1) and (C2) are used by Kim and Lee (2001) for proving the posterior
consistency of the survival function with right censored data. Also, they show that beta
process and gamma process satisfy (Cl) and (C2) and hence vyield consistent posteriors. In
this view, this paper extends Kim and Lee’s result to Poisson process models.

4. Proofs of Theorem 1

Lemma 1. For =0, 1, -, s € [0, 7], c>0 and A > 0,
limsup sup z'+lf1 i n—c ?: k
— S —
pooo selo A/nx(l x) " “dx =0Ck/1 exp(—A4) a.s.,
where Cy are positive constants, for k = 0, 1, =+, i, depending on [ and ¢, but not on A
and s.

Proof. Without loss of generality, assume 0 < A/n < 1 and #n—¢>(. We prove this lemma
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by induction on i. First, suppose i=0. Since
1
. n—c g __ n _ AN n—c+l
nf/x/n(l x) ax n—c-i-l(1 n) ’

the result follows for 1=0.

Suppose the result holds for :—1 with i=1, 2, ---. Then, using integration by part,

1 i+l
i+l i(1 _ o\ n—c n ANigqg AN n—c+l
i f/]/nx(l %) dx < n—c+1 ( n) (1 n)

n—c+1l?

Using the induction assumption, the result follows for all =0, 1, ---. [

; e B
+ ni zf/‘/ xz—l(l_x) n-—c+ldx_

Lemma 2. Suppose (Cl) holds. Then, for i=0, 1, -,

t ol
sup Y . : .
e [0, 1] fo fo x'(1—x)" gx) dxAy(s) ds — 0, with probability 1.

Proof. Let g'= sup ,eq.1].ser0.9(1—%)g{x), which is finite by (Cl). Using the fact

Id'<1 for all =0, 1,---, we have

fotfolxi(l_x) ” gs(x) dx/lo(s) ds
< forfol xi(l_x) ngs(x) dx/‘o(s) ds
= forfol(hx) "H(1—x) g,(%) dxAg(s) ds

< fo —%/10(3) ds

< g*Ao(T) .
n

0

T
where Ay(7) = fo A¢(s)ds, and the proof is completed. [

Lemma 3. Suppose (C1) and (C2) hold Then, for i=0, 1, -,

1 . _ ) N
col0, o fo 2'(1=x) """ gx) — W)l dr= o(-;h—l), with probability 1.

Proof. Let

- sup B
M= xE[O,l],se[o,T](l ol g (x) + h(s)].

Note that M<{oo by (Cl) and (C2). Choose an arbitrary large positive number A. For all



830 Yongdai Kim

positive integer n such that A/x# < 1, define

= sup _
dn - x€[0, A/n),s€[0, 7] |gs(x) h(s)l .

By (C2), IirLlod,,=O. For all n with A/#<1 and s € [0, 7], we have
: 1,
21— ) " g () — k)l d
0
. Aln 1 .
i+1 ? — n—1 _
<a [ [ [ ] H Q= 0 0 — ns ax
. Aln . X 1 .
i+1 iry n—1 i+1 iry n—2 _ .
<n d”fo 2(1—x)" "dx+n L/nx(l )" (1—lg(x) — h(s)ldx
i1, 0 AN (A7 i+1 Vo a2
<ntld, (4 [ axtn Manx(l x) "2y
<Atlg +n"+‘Mf1 x(1—x) ""2dx
- i Aln :
By lemma 1 and the fact that liggo d,=0,

limsup sup _i+1 (' oy n=1 _ : k _
MU 8D i [ai(1—0) " g - Mol drs 3 Cedt exn(—A),

for some positive constants C, independent of A, for A2=0, 1, 2,---, i. Since A is arbitrary

large, the result follows. [

Lemma 4. Suppose (Cl) and (C2) hold. Then , for i=0,1, -,

1
sup ioq_ yn1 [ &2 - (L
sel0, 7, AN (9 =1 on(l %) (kn(s) ")dxl_o( )

/)
where

k(9= [[(1-2 " g (s

Proof. For s€[0, 7] with AN, (s)=1,
‘fol x'(1—x) ’“%%—n)dx ’

= knl(s) j;)l xl(l—x) " lgs(x)_h(S) I dx

el fol ' (1=2) "7 | b(s) = ku(S)n | . o

It suffices to show supremums of two terms on the right hand side of (7) over all
s€[0, 7] with AN (s)=1 converge to 0 with probability 1. In this proof, sup and inf are the

supremum and infimum over all s €[o, r] with AN (s)=1, respectively.
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First, we have

sup | nk, ()= k() | = sup | n [, (1= )" g,(x) d
—n [ (1= " (e |

1
< supnf0 (1—2) """ glx)— h(s) | dx

= 0(1) with probability 1, (8)
where the last equality is due to Lemma 3.
Consider the first term in (7). We have

inf nk,(s)= inf h(s)— sup | W(s) —k,(s)n | (9)
By (C2) and (8) we see that nk,(s)>0 all but finitely many n. Hence, lemma 3 implies
i+l a1
-n i1 _ oy n—l _ . s
sup nhe (3) fo x(1—x) | g(x)—h(s) | dx — 0 , with probability 1.

Finally, consider the second term in (7).
. 1.
n sl [) # A=) " )~ k(7] d

Ws)—k,(s)n

. 1
<#n'su fo #(1—x) " tax

= p k,(s)
| h(s) —k,(s)n | n' TG+1)
< sup (5) 7 (n+1) -~ (n+9)

Again using (C2) and (8) together we have
inf &,(s)n> inf A(s)— sup | A(s)—k,(s)n| > 0
all but finitely many # with probability one. Hence the second term in (7) converges to 0
with probability due to (8). This completes the proof. [

Proof of Theorem 1. Since the posterior distribution of / is also a Lévy process and so
it has nondecreasing sample paths with probability 1, it suffices to show that

E(AD | N, ...,N,) = 4D (10)

and

Var (A(H) | Ny, ...,N,) = 0 (11

with probability one, for all ¢ [0, 7].
Nothing that k,(s)=c,(s)/A,(s) for s>0 with AN(s)=1 and N (0)=0 with

probability one, we have
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t 1
EQAD | My, o, N = [ [ (1=0) " g.x) dedo(s) ds

t fot knl(s) fol 2(1—x) """ g(x) dx dN (s) (12)

By Lemma 2, the first term on the right hand side of (12) converges to 0 with probabilityl.
By adding and subtracting the same quantity and using Lemma 4, the second term on the
right hand side of (12) is rewritten by

! ! n—1 gs(x) 7 1
fonfo x(1—x) RO ndN_(s)
t 2 1 _ n—1 L
+ fo n fo x(1—2)" "dx " dN (s) (13)
Note that
N (¢
SUD e (o, Al “—;—) —A()1-0 (14)

with probability 1 (see Andersen et al. 1996 for the proof). Hence, by (14) and Lemmas 4,
the first term of (12) converges to 0 with probability 1. By the beta integral, the second term
of (12) is

t n ._1_
fo n+1 n dN (s).

n
n+1

For (11) , we have

Var A | Ny, e N = [ [ o120 " .00 die 2o() s

Since — 10, the second term of (12) converges to A*(# by (14).

+ fot [ knl(s) folxz(l_x) "o (%) dx

k,(s)
The first then on the right hand side of (15) converges to 0 with probability 1 by lemma 2.
Since the integrand of the second term of (15) is the variance of the density

_( L folx(l—x)"_lgs(x)dx)z]dN.(S) (15)

k,,l(s) (1—x) "1 g(x) , for 0<x<1,

it is less than or equal to
1
kl(s) fO x2(1_x) ! g{x) dx .

Hence, the second term on the right hand side of (15) is less than or equal to
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-%%—n‘ dx-lg dN (s)

fotnfolxz(l —x) ™!

w [ 20— L av 9

<f'n [l 20-n |5,

! nl(3) 1
0 (n+1)(n+2) n dN (s)

dx% dN (s)

By (14) and lemmas 4, it converges to 0 with probability 1. [
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