• Title/Summary/Keyword: survival inference

Search Result 30, Processing Time 0.022 seconds

Statistical Applications for the Prediction of White Hispanic Breast Cancer Survival

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5571-5575
    • /
    • 2014
  • Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

Bayesian Method for Modeling Male Breast Cancer Survival Data

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Rana, Sagar;Ahmed, Nasar Uddin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.663-669
    • /
    • 2014
  • Background: With recent progress in health science administration, a huge amount of data has been collected from thousands of subjects. Statistical and computational techniques are very necessary to understand such data and to make valid scientific conclusions. The purpose of this paper was to develop a statistical probability model and to predict future survival times for male breast cancer patients who were diagnosed in the USA during 1973-2009. Materials and Methods: A random sample of 500 male patients was selected from the Surveillance Epidemiology and End Results (SEER) database. The survival times for the male patients were used to derive the statistical probability model. To measure the goodness of fit tests, the model building criterions: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were employed. A novel Bayesian method was used to derive the posterior density function for the parameters and the predictive inference for future survival times from the exponentiated Weibull model, assuming that the observed breast cancer survival data follow such type of model. The Markov chain Monte Carlo method was used to determine the inference for the parameters. Results: The summary results of certain demographic and socio-economic variables are reported. It was found that the exponentiated Weibull model fits the male survival data. Statistical inferences of the posterior parameters are presented. Mean predictive survival times, 95% predictive intervals, predictive skewness and kurtosis were obtained. Conclusions: The findings will hopefully be useful in treatment planning, healthcare resource allocation, and may motivate future research on breast cancer related survival issues.

Model-Based Survival Estimates of Female Breast Cancer Data

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Rana, Sagar;Ahmed, Nasar Uddin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2893-2900
    • /
    • 2014
  • Background: Statistical methods are very important to precisely measure breast cancer patient survival times for healthcare management. Previous studies considered basic statistics to measure survival times without incorporating statistical modeling strategies. The objective of this study was to develop a data-based statistical probability model from the female breast cancer patients' survival times by using the Bayesian approach to predict future inferences of survival times. Materials and Methods: A random sample of 500 female patients was selected from the Surveillance Epidemiology and End Results cancer registry database. For goodness of fit, the standard model building criteria were used. The Bayesian approach is used to obtain the predictive survival times from the data-based Exponentiated Exponential Model. Markov Chain Monte Carlo method was used to obtain the summary results for predictive inference. Results: The highest number of female breast cancer patients was found in California and the lowest in New Mexico. The majority of them were married. The mean (SD) age at diagnosis (in years) was 60.92 (14.92). The mean (SD) survival time (in months) for female patients was 90.33 (83.10). The Exponentiated Exponential Model found better fits for the female survival times compared to the Exponentiated Weibull Model. The Bayesian method is used to obtain predictive inference for future survival times. Conclusions: The findings with the proposed modeling strategy will assist healthcare researchers and providers to precisely predict future survival estimates as the recent growing challenges of analyzing healthcare data have created new demand for model-based survival estimates. The application of Bayesian will produce precise estimates of future survival times.

Regression discontinuity for survival data

  • Youngjoo Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.155-178
    • /
    • 2024
  • Regression discontinuity (RD) design is one of the most widely used methods in causal inference for estimation of treatment effect when the treatment is created by a cutpoint from the covariate of interest. There has been little attention to RD design, although it provides a very useful tool for analysis of treatment effect for censored data. In this paper, we define the causal effect for survival function in RD design when the treatment is assigned deterministically by the covariate of interest. We propose estimators of this causal effect for survival data by using transformation, which leads unbiased estimator of the survival function with local linear regression. Simulation studies show the validity of our approach. We also illustrate our proposed method using the prostate, lung, colorectal and ovarian (PLCO) dataset.

Survival Analysis for White Non-Hispanic Female Breast Cancer Patients

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4049-4054
    • /
    • 2014
  • Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.

Modelling the Informative Dropouts with QoL (QoL에 의한 정보형 중도탈락의 모형화)

  • Lee, Ki-Hoon
    • Journal of Applied Reliability
    • /
    • v.6 no.3
    • /
    • pp.225-237
    • /
    • 2006
  • This paper proposes a method of modelling the informative dropouts with QoL(quality of life) in survival analysis. QoL is the index to measure the health related quality of life of a patient who got some treatments for a disease. Dropouts are prevalent occurrences on longitudinal study They are commonly dependent to the QoL of patients, that is, severe disease or death and called informative dropouts. Modelling the mechanism of dropouts could achieve the more accurate inference for survival analysis. A likelihood method is proposed to estimate the survival parameter and test the patterns of dropouts.

  • PDF

Semiparametric Inference for a Multistate Stochastic Survival Model

  • Sung Chil Yeo
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.239-263
    • /
    • 1998
  • In this paper, we consider a multistate survival model which incorporates covariates and contains two illness states and two death states. The underlying stochastic process is assumed to follow nonhomogeneous Markov process. The estimates of survival, transition and competing risks probabilities are given via the methods of partial likelihood and nonparametric maximum likelihood. Our discussion is based on the statistical theory of counting process. An illustration is given to the data of patients in a heart transplant program. The goodness of fit procedures are also discussed to check the adequacy of the model.

  • PDF

Posterior Consistency of Bayesian Inference of Poisson Processes

  • Kim, Yongdai
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.825-834
    • /
    • 2002
  • Poisson processes are widely used in reliability and survival analysis. In particular, multiple event time data in survival analysis are routinely analyzed by use of Poisson processes. In this paper, we consider large sample properties of nonparametric Bayesian models for Poisson processes. We prove that the posterior distribution of the cumulative intensity function of Poisson processes is consistent under regularity conditions on priors which are Levy processes.

Estimating survival distributions for two-stage adaptive treatment strategies: A simulation study

  • Vilakati, Sifiso;Cortese, Giuliana;Dlamini, Thembelihle
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.411-424
    • /
    • 2021
  • Inference following two-stage adaptive designs (also known as two-stage randomization designs) with survival endpoints usually focuses on estimating and comparing survival distributions for the different treatment strategies. The aim is to identify the treatment strategy(ies) that leads to better survival of the patients. The objectives of this study were to assess the performance three commonly cited methods for estimating survival distributions in two-stage randomization designs. We review three non-parametric methods for estimating survival distributions in two-stage adaptive designs and compare their performance using simulation studies. The simulation studies show that the method based on the marginal mean model is badly affected by high censoring rates and response rate. The other two methods which are natural extensions of the Nelson-Aalen estimator and the Kaplan-Meier estimator have similar performance. These two methods yield survival estimates which have less bias and more precise than the marginal mean model even in cases of small sample sizes. The weighted versions of the Nelson-Aalen and the Kaplan-Meier estimators are less affected by high censoring rates and low response rates. The bias of the method based on the marginal mean model increases rapidly with increase in censoring rate compared to the other two methods. We apply the three methods to a leukemia clinical trial dataset and also compare the results.

Random Effects Models for Multivariate Survival Data: Hierarchical-Likelihood Approach

  • Ha Il Do;Lee Youngjo;Song Jae-Kee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.

  • PDF