• Title/Summary/Keyword: surgical robots

Search Result 24, Processing Time 0.029 seconds

The Present and Future of Medical Robots: Focused on Surgical Robots (의료로봇의 현재와 미래: 수술로봇을 중심으로)

  • Song, Mi Ok;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.349-353
    • /
    • 2021
  • This study is a review study attempted to analyze the current situation of surgical robots based on previous research on surgical robots in the era of the 4th revolution, and to forecast the future direction of surgical robots. Surgical robots have made full progress since the launch of the da Vinci and the surgical robot is playing a role of supporting the surgeries of the surgeons or the master-slave method reflecting the intention of the surgeons. Recently, technologies are being developed to combine artificial intelligence and big data with surgical robots, and to commercialize a universal platform rather than a platform dedicated to surgery. Moreover, technologies for automating surgical robots are being developed by generating 3D image data based on diagnostic image data, providing real-time images, and integrating image data into one system. For the development of surgical robots, cooperation with clinicians and engineers, safety management of surgical robot, and institutional support for the use of surgical robots will be required.

A Study on Safety and Performance Evaluation of Micro - surgical Robots Based on Open Robot Platform (개방형 로봇 플랫폼 기반 미세수술로봇의 안전성 및 성능평가에 관한 연구)

  • Park, Junhyun;Ho, YeJi;Lee, Duck Hee;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.206-214
    • /
    • 2019
  • Surgical methods and associated precision systems have been developed, but surgical procedures that require precise location and fine manipulation of the lesion remain a limitation. The combination of precision robot manipulation technology and 3D medical image navigation technology overcomes the limitations of minimally invasive surgery (MIS) and enables a more stable and successful operation. Surgical robots are surgical robots such as da Vince, and surgical robots using industrial robotic arms. There are various developments and researches of medical robots. In recent medical robot development, a new type of surgical robot based on an industrial robot arm capable of easily replacing the end effector according to the user's needs is being actively developed at home and abroad. Therefore, in this study, we developed safety and performance evaluation guideline for micro - surgical robots based on open robot platform using general purpose robot arm to help quality control of the medical device.

Medical Image Registration Methods for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법)

  • An, Jae-Bum;Lee, Sang-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.

Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘)

  • Lee, Sang-Yoon;Shin, Seung-Ha;An, Jae-Bum;Joo, Jin-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF

The Present and Future of Robotic Surgery (로봇수술의 현재와 미래)

  • Rha, Koon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.68-70
    • /
    • 2008
  • Since the beginning of the 21st century, the emergence of innovative technologies made further advances in minimal access surgery possible. Robotic surgery and telepresence surgery effectively addressed the limitations of laparoscopic procedures, thus revolutionizing minimal access surgery. Surgical robots provide surgeons with to technologically advanced vision and hand skills. As a result, such systems are expected to revolutionize the field of surgery. In that time, much progress has been made in integrating robotic technologies with surgical instrumentation. However, robotic surgery will not only require special training, but it will also change the existing surgical training pattern and reshape the learning curve by offering new solutions, such as robotic surgical simulators and robotic telementoring. This article provides an introduction to medical robotic technologies, develops a possible classification, reviews the evolution of a surgical robot, and discusses future prospects for innovation. In the future, surgical robots should be smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies from a number of different fields. We believe that, in the near future as robotic technology continues to develop, almost all kinds of endoscopic surgery will be performed by this technology.

  • PDF

Development Trends and Use Cases of Medical Service Robots: Focused on Logistics, Guidance, and Drug Processing Robots (의료서비스 로봇의 개발 동향 및 활용 사례: 물류, 안내, 약제처리 로봇을 중심으로)

  • Kim, Seon Hee;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.523-529
    • /
    • 2021
  • Medical service robots are variously defined and classified by researchers and related government departments, but surgical robots and rehabilitation robots are commonly included in medical service robots, and except for these, the robots are classified as other medical service robots. In this study, domestic and foreign development trends and use cases were considered, focusing on logistics, guidance, and drug processing robots among other medical service robots. Logistics and guidance robots were developed quite a lot in Korea and completed a pilot project, or are being commercialized in hospitals, and exported. However, although the drug prcocessing robots was developed in Korea, the robot being use in the hospital was an imported. In order to expand and activate the robot market, systematic follow-up studies such as demand prediction studies are needed.

Prospects of Geriatric Nursing Application Based on Robot Technology (로봇 테크놀로지 기반의 노인간호 활용전망)

  • Oh, Jin Hwan
    • Journal of Korean Gerontological Nursing
    • /
    • v.20 no.sup1
    • /
    • pp.127-136
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the possibility of using intelligent robot based nursing practice as discussed in previous research and also, to propose directions for robot care for elders. Methods: For this study 28 previous researches using robots in health care field were reviewed and related research trends introduced. Results: Robot applications in the healthcare field were mainly for rehabilitation, surgery, interaction, and nursing assistance through robotics. Especially types of robot include pet type robots, humanoid robots, surgical robots, rehabilitation robots, robot suit and entertainment robots with monitors. The research participants were patients with dementia and institutionalized elderly people. It was found that a human-robot interaction was effective from physical, mental, emotional and social aspects. Conclusion: Robots can be used for various purposes such as nursing assistance, patient health promotion and education. It is necessary to reduce the human burden of care work using robots and to introduce robot care programs which can meet the needs of elders. Therefore, korean nurses should make efforts to change their practice to new geriatric nursing through repeated research based on the scientific data.

Analysis of microsurgery task for developing microsurgery manipulator (미세수술용 매니퓰레이터의 개발을 위한 미세수술 작업 분석)

  • 송세경;김완수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1631-1634
    • /
    • 1997
  • Since surgery is usually a difficult task because of physiological tremor, eye strain, and tremor, contagious and radioactive hazard, it is necessary to develop micro-surgery telerobotic system using improved tools suitable for their specific tasks. Nowadays the growth of interest on microsurgery and medical applications of robotics has been so rapid. But the medical robots are only practical applications of the industrial robots. This paper identifies five general areas of advanced microsurgery based on the current technological background and expertise, and analyzes the motion, tool and accuracy with respect to microsurgery task, and proposed the criteria to evaluate micro-surgical manipulator. The analysis of microusrgery can be heplful to clarify some basic concept and design of micro-surgical manipulators. With these data we will alos propose an efficient in-parallel-platform manipulator having special kinematic structrue structure suitable for microsurgery.

  • PDF

Robotic Surgery in the Orthopedic Field (정형외과 영역에서 로봇수술)

  • Lee, Woo-Suk;Jung, Woo-Suk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.459-465
    • /
    • 2018
  • Of the many factors that affect the clinical outcomes of orthopedic surgery, the surgical procedure is the most important. Robotics have been developed to perform the surgical procedures more accurately and consistently. Robotic surgical procedures in the orthopedic field were developed 20 years ago. Some designs of surgical robots have disappeared due to practical problems and complications, and an another design of surgical robots is emerging. To date, the use of robot surgery in arthroplasty is still controversial in terms of the clinical outcomes, practicality, and cost-effectiveness, even though it has been reported to be effective in the alignment and positioning of components in the field of artificial joints. Early robotic surgery was based mainly on active robot surgery according to the scheduled operation without the intervention of the operator. Recently the semi-active system of robotic surgery has been introduced. In a semi-active system, the robot constrains the surgeon to a haptic boundary defined by the computer based on the 3-dimensional imaging preoperative plan, and the operator can change the preoperative plan through real-time feedback during operation.

Technological Trend of Endoscopic Robots (내시경 로봇의 기술동향)

  • Kim, Min Young;Cho, Hyungsuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.345-355
    • /
    • 2014
  • Since the beginning of the 21st century, emergence of innovative technologies in robotic and telepresence surgery has revolutionized minimally access surgery and continually has advanced them till recent years. One of such surgeries is endoscopic surgery, in which endoscope and endoscopic instruments are inserted into the body through small incision or natural openings, surgical operations being carried out by a laparoscopic procedure. Due to a vast amount of developments in this technology, this review article describes only a technological state-of-the arts and trend of endoscopic robots, being further limited to the aspects of key components, their functional requirements and operational procedure in surgery. In particular, it first describes technological limitations in developments of key components and then focuses on the description of the performance required for their functions, which include position control, tracking, navigation, and manipulation of the flexible endoscope body and its end effector as well, and so on. In spite of these rapid developments in functional components, endoscopic surgical robots should be much smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies for their intelligent vision and dexterous hands not only from the points of the view of surgical, ergonomic but also from safety. We believe that in these respects a medical robotic technology related to endoscopic surgery continues to be revolutionized in the near future, sufficient enough to replace almost all kinds of current endoscopic surgery. This issue remains to be addressed elsewhere in some other review articles.