• Title/Summary/Keyword: surge counter

Search Result 11, Processing Time 0.019 seconds

Current Driving Type Surge Counter (전류구동형 서지카운터)

  • Lee, B.H.;Ahn, C.H.;Chang, S.H.;Jeong, K.M.;Jeon, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1712-1714
    • /
    • 1997
  • This paper deals with the surge counter drived by lightning and switching currents. In order to install the effective surge protective devices, it is important to find the parameters of incident surges. In this paper, for the purpose of protecting the electronic circuits and counting the occuring frequency, the current driving type surge counter is designed and fabricated. The surge counter consists of surge protective divices, current detector, metal oxide varistor(MOV), rectifier, capacitor, and electromagnetic counter. This surge counter is able to count the occuring frequency of surges and to clamp lightning surge current. To evaluate the performance of the surge counter, impulse voltage and current were applied at the surge counter by the surge generator. As a result, applied surges were exactly counted and clamped.

  • PDF

Operating characteristic of surge counter (Arrester용 Surge counter의 동작특성)

  • Kim, Seok-Sou;Choi, Ike-Sun;Byeon, Jin-Ho;Lee, Kang-Sup;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.30-33
    • /
    • 2004
  • A surge counter is installed under surge arrester, which is protecting the power system apparatuses against abnormal voltage and surges originated in power system line. A surge counter is the device of knowing the times of surge flowed in. There are two methods to get the electric power for mechanical movement and detect the surge. One is using ZnO varistor resister and the other is using the current transformer. In this paper, the characteristics of these methods are presented with using the test and evaluation of them. The process of evaluating the characteristics is essential to develop the domestic surge counter.

  • PDF

Operating characteristic of surge counter (Surge arrester용 surge counter의 동작 특성 평가)

  • Kim, Seok-Sou;Choi, Ike-Sun;Byeon, Jin-Ho;Lee, Kang-Sup;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1134-1137
    • /
    • 2004
  • The main function of surge counter is knowing the times of surge flowed in, which is installed under surge arrester. Two methods are presented in this paper to get the electric power for mechanical movement and detect the surge with surge counter. One is using ZnO varistor resister and the other is using the current transformer.

  • PDF

The study on surge detector of digital surge counter for arrester (Arrester용 digital surge counter의 서지 검출 장치에 관한 연구)

  • Kim, Seok-Sou;Choi, Ike-Sun;Cho, Dong-Hwan;Lee, Kang-Sup;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.170-174
    • /
    • 2005
  • The purpose of this study is to design the digital surge counter for lightning arresters. The used detecting method for surges is using the signal of both ends of ZnO varistor. The electronic detecting parts of the digital counter are arranged in outside of main processer for protecting it from noise. The detecting parts change detected signals into small signals. The countermeasures for noises are (1) Shielding (2) Reinforcement of power circuits (3) Cables & Circ1e core (4) Watch-doc & control of input signals.

  • PDF

Development of the Lightning Surge Voltage and Current Counters (뇌써지 전압/전류 카운터의 개발)

  • Kil, K.S.;Chang, S.H.;Lee, B.H.;Lee, Y.K.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1882-1884
    • /
    • 1996
  • This paper deals with the lightning surge counter. In order to install the effective surge protective devices, it is important to find the parameters of incident surges. For the purpose of observing the occurrence frequency as a parameter of the amplitude of surge, two type surge counters were designed and fabricated. One is operated by surge currents, and the other is operated by surge voltages. The former consists of current sensor, metal oxide varister (MOV), rectifier, capacitor and electromagnetic counter. The latter consists of rectifier, voltage divider, comparator, photo coupler and counter circuit, and is useful for detecting the surge voltages.

  • PDF

A Study on PCB's Latch-up Phenomenon by External Electrical Surge (외부 전기서지에 의한 전자회로기판 Latch-up 현상 고찰)

  • Ji, Yeong-Hwa;Jo, Sung-Han;Jung, Chang-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2089-2092
    • /
    • 2010
  • There are many cases that interrupt the production process because of malfunctions caused by electronic circuit boards which control equipment, but it is difficult to distinctly identify the causes in many cases. Especially, CMOS devices with the control logic circuit return automatically to normal state after their own faults. Therefore it is not easy to analyze the problems with electronic circuit boards. Recently, nuclear power plant experienced a failure due to the malfunction of electronic circuit boards and it was identified that the reason of the malfunction was because of latch-up phenomenon caused by external surge in electronic devices. This paper presents the causes and the phenomenon of latch-up by experiment and also a way using counter EMF diodes, noise filters and surge protective devices to prevent latch-up phenomenon from electronic circuit boards, finally confirms the effectiveness of the result by experiment.

A Study on the Surge Analysis for Grounding System of the Communication Base Station (통신기지국 접지계의 써어지해석)

  • Kim, Jae-Yee;Yoon, Tae-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2025-2027
    • /
    • 2004
  • The grounding system design of the communication base station can be on the unfavorable conditions to induce the safe designing because of the limited area of the communication base station and the week point of surge caused by the given geographical condition such as the top point of mountain. In this paper, it is examined throughly about the way of safe designing that can reduce GPR(Ground Potential Rise) within the normal frequency band. And it is also considered the effective counter plan to cope with a transient phenomena that happen when surge of scores MHz-band inserted.

  • PDF

A Study on the Development of Monitoring System for 72.5kV GIS (72.5kV GIS용 감시시스템 개발에 관한 연구(2))

  • Kim, M.S.;Kim, J.B.;Song, W.P.;Kim, D.S.;Kil, G.S.;Jeon, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.473-475
    • /
    • 2001
  • We report the state of the development of monitoring system for 72.5kV GIS. In the first, the usual outline of the monitoring and diagnostic system for GIS was mentioned, and the detailed specifications and state of development were also described. Especially, we present items of monitoring for GIS such as the operating counter of CB, the leakage condition of $SF_6$ gas, the surge counter of LA and the leakage current of LA.

  • PDF

A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors (IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.