• Title/Summary/Keyword: surfactant-stable

Search Result 142, Processing Time 0.026 seconds

A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine (디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구)

  • Kim, Hoseung;Jang, Youngun;Lee, Seokhwan;Kim, Taeyoung;Kang, Kernyong;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

Preparation and Characterization of Polyurethane Microcapsules Containing Functional Oil (기능성 오일을 함유하는 폴리우레탄 마이크로캡슐의 제조 및 분석)

  • 김인회;서재범;김영준
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.400-409
    • /
    • 2002
  • Polyurethane microcapsules containing functional oil (citronella oil) were successfully prepared by conventional interfacial polymerization of tolulene 2,4-diisocyanate (TDI) and ethylene glycol (EG) and characterized by Fourier transform (FT-IR) spectroscopy, Ultraviolet spectroscopy, particle size analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Tile effects of polymerization variables, such as surfactant concentration and agitation speed, on the particle size and particle size distribution were investigated. FT-IR spectroscopic data showed that citronella oil was successfully encapsulated in the microcapsule. Thermogravimetric analysis data showed that the microcapsule was thermally stable up to $220^{\circ}C$. The controlled release of the citronella oil present in the microcapsule core in a methanol medium was demonstrated by ultraviolet spectroscopy showing that the amount of released citronella oil was increased with increasing time. It was observed that the amount of released citronella oil was increased with increasing stirring speed and emulsifier concentration in the rnicrocapsule preparation step. Polyurethane microcapsules containing citronella oil showed excellent anti-moth property.

Solubilization of Talniflumate in Microemulsion Systems (마이크로에멀젼을 이용한 탈니플루메이트의 가용화)

  • Lee, Gye-Won;Cho, Young-Ho;Kim, Hak-Hyung;Kim, Sock-Young;Kim, Do-Kyun;Kim, Eun-Hea
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • Talniflumate is a nonsteroidal anti-inflammatory drug (NSAID), which has been used treat of rheumatoid diseases, is insoluble in water, therefore it has low bioavailability after oral administration. The purposes of this study were to prepare O/W or W/O microemulsions for solubilization of poorly water soluble drug, talniflumate and to formulate into other dosage form. For this purpose, we made O/W or W/O microemulsion with oil(soybean oil, IPM), surfactant (Cremophor $EL^{(R)}$, Tween 80) and water or propylene glycol and evaluated solubility of talniflumate. The microemulsion systems were very stable and showed transmittance above 95% without flocculation or aggregation. Especially, the solubility of talniflumate in the formulation B-1 containing 18% of isopropyl myristate and 71% of tween 80 was 10 times higher than that of other O/W microemulsions. The addition of propylene glycol and N-methylglutamine to the fomulation B-1 showed excellent capacity on the solubilization of talniflumate and the percentage was almost 2.0%. These results suggest that the microemulsion system may be promising for the solubility improvement of talniflumate.

Study on the Spectrophotometric Determination of Rare Earth by Ternary Complex Using Xylenol Orange and Surfactant (Xylenol Orange와 계면활성제의 삼성분 착물에 의한 희토류원소의 분광광도법 정량에 관한 연구)

  • Cha, Ki-Won;Park, Chan-Il;Kang, Sun-Hee;Chang, Byung-Du
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.277-284
    • /
    • 1994
  • The spectrophotometric determination of rare earth elements with XO was investigated in the presence of cetylpyridium chloride(CPC), dodecyltrimethylammonium bromide(DTMAB), cetyltrimetylammonium bromide (CTMAB), Triton X-100 at pH 6.2. The complex between XO and rare earth elements in the presence of cationic surfactants was very stable and more sensitive than in the absence of surfactants. The largest absorbance increase was provided by CTMAB, which was therefore chosen for determination of rare earth elements. REE-XO-CTMAB complex has absorption maxima at 618nm and obeys the Beer's law in the range of 0~0.5 ppm. Molar absorptivity was $1.5{\times}10^5mol^{-1}cm^{-1}l$.

  • PDF

Formation of Nano-emulsions with Resorcinol bis-ethylhexanoate upon Type of Emulsifiers (레조르시놀 비스-에틸헥사노에이트를 함유한 나노에멀젼의 유화제 종류에 따른 형성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • RS White (resorcinol bis-ethylhexanoate) is used in cosmetics as a skin whitening agent. In this study, we studied the possibility of nano-emulsion formation containing whitening agent, RS White, with different types of emulsifying agents. With Tween 80, 60, HCO 60 and 40 as a hydrophilic surfactants and Span 80 as ahydrophilic surfactant, nano-emulsions were formed at appropriate concentrations, but they were not formed in the system using the Myrj 52, Montanov L, and Tegocare 450 with Span 80. The diameter of nano-emulsion sphere was smaller than 100 nm. The emulsion showed a translucent appearance and maintained stability in stability evaluation with time. In vitro skin permeation experiments showed that amounts of skin permeated nano-emulsion for 24 h were $70.84{\mu}g/cm^2$ and those of O/W emulsion were $28.97{\mu}g/cm^2$. In conclusion, a stable nano-emulsion containing the resorcinol bis-ethylhexanoate is effective for potential efficacy system as an efficient delivery system of the functional materials into skin.

Preparation and Application of Polyurethane-urea Microcapsules Containing Phase Change Materials

  • Kwon Ji-Yun;Kim Han-Do
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • For thermal adaptable fabrics, the polyurethane-urea microcapsules containing phase-change materials (PCMs: hexadecane, octadecane and eicosane) were successfully synthesized by interfacial polycondensation using 2,4-toluene diisocyanate (TDI)/poly(ethylene glycol) (PEG400)/ethylene diamine (EDA) as shell monomers and nonionic surfactant NP-12 in an emulsion system under stirring rates of $3,000{\sim}13,000$ rpm. The mean particle size of microcapsule decreased significantly with increasing the stirring rate up to 11,000 rpm, and then leveled off. The mean particle size increased with increasing the content and molecular weight (eicosane > octadecane > hexadecane) of PCMs at the same stirring rate. The mean particle sizes of microcapsules were found to decrease with increasing the NP-12 content up to 1.5 wt%, and thereafter increased a little. It was found that the melting temperature ($T_m$) and crystallization temperature ($T_c$) of three kinds of encapsulated PCMs and their enthalpy changes (${\Delta}H_m,{\Delta}H_c$) increased with increasing PCM contents. The encapsulation efficiencies (Ee) of hexadecane microcapsule linearly increased with increasing the content of hexadecane. It was found that the stable microcapsule containing 50 wt% of hexadecane could be obtained in this study. However, Ee of octadecane and eicosane microcapsules increased with increasing PCM's contents up to 40 wt%, and then decreased a little. By considering the encapsulation efficiency, it was found that the maximum/optimum contents of octadecane and eicosane microcapsules were about 40 wt%. By the dynamic thermal performance test, it was found that the maximum buffering levels of Nylon fabrics coated with hexadecane, octadecane, and eicosane microcapsules were about $-2.4/+2.9^{\circ}C,\;-3.6/+3.6^{\circ}C\;and\;-4.0/+4.7^{\circ}C$, respectively.

The Characteristics of a Fine O/W Emulsion by Nonaqeous Emulsification (비수유화법에 의한 미세 O/W에멀젼의 특성)

  • Lee, S.J.;Ro, Y.C.;Gang, Yun-Seok;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.145-152
    • /
    • 1996
  • A fine oil-in-water (O/W) emulsion using nonaqueous emulsification technique was developed and the behaviors of POE(25)octyldodecyl ether in nonaqueous solvent/oil systems were studied by observing the surface tension, interfacial tension, turbidity and transition temperature. It was found that POE(25)octyldodecyl ether existed soluble in nonaqueous solvent while, in aqueous system, it formed micelles. So, when a solvent, like glycerine in which POE(25)octyldodecyl ether has poor solubility, was added, POE(25)octyldodecyl ether moved to the surface. After saturated at surface, POE(25) octyldodecyl ether began to precitate. The mean particle size of the final emulsion was 230nm. Also, the emulsion system was stable at 0, 25, 40, $50^{\circ}C$ and cycling test for a month, while the conventional emulsion system showed unstability. It is concluded that, by pertinent combination of solvents, the adsorption efficiency of surfactant could be improved.

  • PDF

Analysis of Physical Properties for Various Compositions of Reusable LMG and LCV Micelle Gel

  • Kang, Jin Mook;Lee, Dong Han;Cho, Yu Ra;Hwang, Seon Bung;Ji, Young Hoon;Ahn, So Hyun;Keum, Ki Chang;Lee, Re Na;Cho, Sam Ju;Noh, Insup
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.175-179
    • /
    • 2016
  • In this study, we evaluated the reusable leuco malachite green (LMG) micelle gel properties dependent on various components of chemical concentration and compared with leuco crystal violet (LCV). The gels were delivered to 10, 20, 30, 40 and 50 Gy at 6 MV photon beam from linear accelerator and analyzed using spectrophotometry. We confirmed that the reusable LMG and LVC absorbance wavelength peak were made up at 630 nm and 600 nm respectively. The transparency of reusable LMG decreased with higher amount of trichloroacetic acid (TCAA) and lower reusable LMG dyes. 1 mM reusable LMG was the lowest transparency. The sensitivity was increased depending on lower trichloroacetic acid (TCAA) concentrations and the amount of suitable surfactant (Triton X-100), which was found to be 7 mM. However, we were not able to investigate sensitivity effects factor from reusable LMG dyes. The gel dosimeter containing 16 mM TCAA, 7 mM Triton X-100 gel dosimeter showed the highest sensitivity at $0.0021{\pm}0.0001cm^{-1}.Gy^{-1}$. The sensitivity of LCV was found to be higher than reusable LMG at $0.0037{\pm}0.0005cm^{-1}.Gy^{-1}$. The reusable LMG and LCV dose responses were shown to be $R^2=0.997$, $R^2=0.999$ respectively, as stable measurement results. Future research is necessary to improve dose sensitivity, dose rate dependency and gel fading with extensive chemical formulations.

Stabilizing Technology of Pure Vitamin A using Triple Matrix Capsulation

  • Kim, In-Young;Lee, Young-Gue;Seong, Bo-Reum;Lee, Min-Hee;Lee, So-Ra;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.694-701
    • /
    • 2015
  • In order to get stabilized pure retinol in skin care cosmetics, developing the three layered matrix bead capsules were studied. This study relates to make a cosmetic composition using the three layered matrix capsule that could increase the stability of the active ingredient. A primary encapsulation, vitamin A (pure retinol) of active ingredient was perfectly capsulated into water-in-oil (Water-in-Oil: W/O) emulsion vesicle using PEG-10 dimethicone copolyol emulsifier. A secondary encapsulation of multiple emulsion of the water-in-oil-in-water (W/O/W) emulsion blending W/O emulsion using sucrose distearate of surfactant was developed using homogenizing emulsifying system. Pure retinol of active ingredient was stably capsulized to inside the W/O/W-multiple emulsion in order to load the triple matrix capsulation. By coating it with a polymer matrix base, encapsulated in the triple layered type, which were developed bead encapsulation of 2~10mm uniformly size. To show beautifully appearance capsulated bead type, these finish particles in this triple matrix layer were developed as a gold, green, dark brown, silver and blue color were encapsulated in the bead types. Structural particle certification of triple matrix layer was observed through SEM analysis. Stability of pure retinol was remained stable more than 99.7% for 30 days at $42^{\circ}C$ incubating conditions compared with non-capsule. This technology was applied in different formulations such as various sizes and colors that by applying the skin care cosmetics. In the future, this technology to encapsulate an unstable active ingredient, we expect to be expanded this application in the food and drug as a time delivery system.

Core-Shell Poly(Styrene/Sulfonated N-hydroxy Ethyl Aniline) Latex Particles Prepared by Chemical Oxidative Polymerization in Emulsion Polymerization

  • Shin Jin-Sup;Lee Jung-Min;Suzuki Kiyoshi;Nomura Mamoru;Cheong In-Woo;Kim Jung-Hyun
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.466-472
    • /
    • 2006
  • The kinetic behavior of emulsion polymerizations of styrene in the presence of sulfonated N-hydroxy ethyl aniline (SHEA) was investigated with two initiators: 2,2'-azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). SHEA was synthesized using a stepwise polyurethane reaction method from 3-hydroxy-1-propane sulfonic acid sodium salt, isophorone diisocyanate (IPDI), and N-(2-hydroxyethyl) aniline. Stable core-shell poly(styrene/sulfonated N-hydroxy ethyl aniline, St/SHEA) latex particles were successfully prepared by using an appropriate amount of AIBN, in which SHEA plays the role of 'surfmer', i.e., acting as both a surfactant in the emulsion polymerization and a monomer in the chemical oxidative polymerization. The kinetic behavior was dissimilar to that of typical emulsion polymerization systems. A long inhibition period and low rate of polymerization were observed due to radical loss by the oxidative polymerization of SHEA. It was concluded, due to the low water-solubility of AIBN and retardation reaction by SHEA, that the initial loci of polymerization were monomer droplets. However, growing polymer particles as polymerization loci became predominant as polymerization proceeded. It was suggested that AIBN was more effective than KPS in the preparation of the core-shell type poly(St/SHEA) latex particles. With KPS, no substantial polymerization was observed in any of the samples.