• Title/Summary/Keyword: surface-approach

Search Result 2,527, Processing Time 0.029 seconds

Development of the direct boundary element method for thin bodies with general boundary conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.701-708
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. Th eHelmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discontinuous across the thin body. In this approach, only the neural surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

ON CONSTRUCTIONS OF MINIMAL SURFACES

  • Yoon, Dae Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • In the recent papers, S'anchez-Reyes [Appl. Math. Model. 40 (2016), 1676-1682] described the method for finding a minimal surface through a geodesic, and Li et al. [Appl. Math. Model. 37 (2013), 6415-6424] studied the approximation of minimal surfaces with a geodesic from Dirichlet function. In the present article, we consider an isoparametric surface generated by Frenet frame of a curve introduced by Wang et al. [Comput. Aided Des. 36 (2004), 447-459], and give the necessary and sufficient condition to satisfy both geodesic of the curve and minimality of the surface. From this, we construct minimal surfaces in terms of constant curvature and torsion of the curve. As a result, we present a new approach for constructions of the minimal surfaces from a prescribed closed geodesic and unclosed geodesic, and show some new examples of minimal surfaces with a circle and a helix as a geodesic. Our approach can be used in design of minimal surfaces from geodesics.

Dynamic Window Approach with path-following for Unmanned Surface Vehicle based on Reinforcement Learning (무인수상정 경로점 추종을 위한 강화학습 기반 Dynamic Window Approach)

  • Heo, Jinyeong;Ha, Jeesoo;Lee, Junsik;Ryu, Jaekwan;Kwon, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • Recently, autonomous navigation technology is actively being developed due to the increasing demand of an unmanned surface vehicle(USV). Local planning is essential for the USV to safely reach its destination along paths. the dynamic window approach(DWA) algorithm is a well-known navigation scheme as a local path planning. However, the existing DWA algorithm does not consider path line tracking, and the fixed weight coefficient of the evaluation function, which is a core part, cannot provide flexible path planning for all situations. Therefore, in this paper, we propose a new DWA algorithm that can follow path lines in all situations. Fixed weight coefficients were trained using reinforcement learning(RL) which has been actively studied recently. We implemented the simulation and compared the existing DWA algorithm with the DWA algorithm proposed in this paper. As a result, we confirmed the effectiveness of the proposed algorithm.

Interference-Free Tool Path with High Machinability for 4- and 5-Axes NC Machining of Free-Formed Surfaces (공구간섭과 절삭성을 고려한 자유 곡면의 4, 5축 NC 가공을 위한 공구 경로 산출)

  • 강재관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.146-153
    • /
    • 1998
  • NC machines with 4 or 5 axes are capable of various tool approach motions, which makes interference-free and high machinablity machining possible. This paper deals with how to integrate these two advantages (interference-free and high machinability machining) in multi-axes NC machining with a ball-end mill. Feasible tool approach region at a point on a surface is first computed, then among which an approach direction is determined so as to minimize the cutting force required. Tool and spindle volumes are considered in computing the feasible tool approach region, and the computing time is improved by trans-forming surface patches into minimal enclosing spheres. A cutting force prediction model is used for estimating the cutting force. The algorithm is developed so as to be applied to 4- or 5-axes NC machining in common.

  • PDF

Construction of Cubic Triangular Patches with $C^1$ Continuity around a Corner

  • Zhang, Renjiang;Liu, Ligang;Wang, Guojin;Ma, Weiyin
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.149-156
    • /
    • 2006
  • This paper presents a novel approach for constructing a piecewise triangular cubic polynomial surface with $C^1$ continuity around a common corner vertex. A $C^1$ continuity condition between two cubic triangular patches is first derived using mixed directional derivatives. An approach for constructing a surface with $C^1$ continuity around a corner is then developed. Our approach is easy and fast with the virtue of cubic reproduction, local shape controllability, $C^2$ continuous at the corner vertex. Some experimental results are presented to show the applicability and flexibility of the approach.

Proposed approach for determination of tributary areas for scattered pressure taps

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.617-627
    • /
    • 2013
  • In wind load calculations based on pressure measurements, the concept of 'tributary area' is usually used. The literature has less guidance for a systematic computational methodology for calculating tributary areas, in general, and for scattered pressure taps, in particular. To the best of the author's knowledge, there is no generic mathematical equation that helps calculate the tributary areas for irregular pressure taps. Traditionally, the drawing of tributary boundaries for scattered and intensively distributed taps may not be feasible (a time and resource consuming task). To alleviate this problem, this paper presents a proposed numerical approach for tributary area calculations on rectangular surfaces. The approach makes use of the available coordinates of the pressure taps and the dimensions of the surface. The proposed technique is illustrated by two application examples: first, quasi-regularly distributed pressure taps, and second, taps that have scattered distribution on a rectangular surface. The accuracy and the efficacy of the approach are assessed, and a comparison with a traditional method is presented.

High-Order Surface Gradient Coil Design Using Target Field Approach

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Choi, H.J.;Cho, Z.H.;Oh, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The purpose of this paper is to design high-order (or radial) surface gradient coil (SGC), which can provide multi-dimensional spatial selection. Although the spatial Selection with High-Order gradienT (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient pro- duced by conventional cylindrical-shape coils has not been clinically useful due to the large selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useflll size of 1-2 cm in diameter by applying stronger radial gradient field with much less gradient driving power. So far radial SGCs have been designed by using the field component method and may cause distortion in the selection shapes. In this paper, by using the target field approach for the coil design, selected volumes became almost circular. A 40 cm-by-40 cm $z^2$_surface gradient coil has been designed and implemented by using the target field approach. Phantom and volunteer studies have been performed Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF