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Abstract — This paper presents a novel approach for constructing o piecewise triangular cubic polynomial surface with ¢!
continuity around a common corner vertex. A C' continuity condition between two cubic triangular patches is first derived
using mixed directional derivatives. An approach for constructing a surface with C' continuity around a corner is then
developed. Our approach is easy and fast with the virtue of cubic reproduction, local shape controllability, C* continuous at
the corner vertex. Some experimental results are presented to show the applicability and flexibility of the approach.
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1. Introduction

Surface design is an important field in computer
aided geometric design and computer graphics. A
widely accepted and popular way in surface rccon-
struction from the scattered data is the use of smoothly
joined triangular Bernstein-Bézier patches or B-spline
patches. The resulting surface must be visually smooth,
that is, the patch boundary and across-boundary data
must agree with the given values and this provides C or
G continuity for the overall surface. The compositions
of Bézier triangles that meet with G! continuity have
been developed by many researchers |5,10,11]. The
twist compatibility problem | 18] or the vertex enclosure/
consistency problem [12] which arises when joining
some polynomial patches with G' continuity around a
common vertex is a difficult problem. For example, let
5 tnangular patches 7, 1= 1, 2, ...,5 meel at a corner as
in Fig. 1. Starting from the first patch 73, patch 7.,
could be determined by the continuity conditions with
7, along their common boundary, i=1,2,3,4. But
satisfying the continuity condition along the common
boundary between patch 75 and T; will present serious
difficulties.

The earliest schemes that addressed the vertex
consistency problem are Clough-Tocher-like domain
spliting methods [1,13,16]. The triangles are divided
into threc sub-triangles and quartic G' paich per sub-
triangle is produced to interpolate positions and normals.
The free parameters are emploved in order to control
the shapes.
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The Gregory technique [3,4] seeks to construct patches
on the faces formed by a net of intersecting curves in
space. 1t uses the curves themselves and cross-boundary
tangent information. From the given information, sub-
patches are formed at each comer of a face and these
arc then blended to form the full patch that join
together with tangent plane continuily. A numbcr of
variants and extensions to the basic method have been
investigated by several researchers [15,19]. The exlen-
sions of the technique to give higher order continuity
are studied in [7,8].

Loop presents a piecewise G' spline surface composed
of sextic triangular Bézier patches, one per triangle [9].
Optional shape parameters are available for additional
local control over the shape of the surface. But
unwanted surface undulations occur due to severe
constraints on the second derivatives along boundary
curves al each end-poinl. The recemt work of [5]
presents an interpolating quintic G' triangular splinc
surface, which is a generalization of Loop's scheme [9].
The basic idca is to use a regular 4-split of each
triangle so that the constraints between cach end-poing
of the boundary curves are relaxed and an interpolating

Fig. 1. Tnangular patches around a comer.
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curve network can be built without unwanted undula-
tions. Both strategies lead to linear systems of equations
with a circulant matrix, which will not give a solution
in general if an even number of patches meet at a
comer [5,9].

Furthermore some special approaches can be found
in [6,14,17], in which various restrictions are made on
the input data, thus their methods are not general
enough in practice,

In this paper we present a novel approach to
construct a piecewise triangular polynomial surfaces
with C' continuity around a comer vertex. For easy
evaluation and manipulation one often aims at a local
method which uses low degree polynomial patches.
Cubic polynoinials are used in our method. The basic
idea is to use and keep the mixed directional derivatives
along their common boundary between adjacent patches.
The result surface is piecewise cubic triangular
polynomials and is C' continuous across the boundaries
between different patches and is C' conti- nuous at the
corner vertex. Our approach is easy to use, the result
surfaces can be quickly obtained by solving a simple
4 x 4 linear system which is always non-degenerate. The
user can adjust the input values to control the shape of
the surface interactively, which makes it a new and
useful tool for shape design in CAD.

2. Preliminaries

2.1. Representations of triangular surfaces

Let T be a non-degenerate triangle in the plane with
vertices T,={(x,v), i=1,2,3. Any point P=(x,y)
within T can be expressed uniquely as

P=uT +vT,+wT;

in terms of barycentric coordinates (u, v, w), u+v+w
=1,u20,v=0, w20 that can be obtained by solving
the following equations

X=ux;tvx,twx,
y=uy, tvy,twy, (1)
{=u+v+w

The Bernstein-Bézier polynomial or the Bézier triangular
surface of degree » over triangle domain T has the
form [2]

T(P)=T"(u,v,w)= > Bl alu,v,w)T,
itj+k=n

) #! i i f

where B}, (u,v,w !k!svw T 0€R. Let

={Z Zaux'y", aUeR}

i=0 =0

be the polynomial set with degree no larger than 5. It is

known that the degree » Bemstein-Bézier polynomials
and the polynomials in [T, can be converted into each
other using Eq. ![2].

2.2. Directional derivatives

Let u(x, y) be a bivariate continnous function with
continuous second order partial derivatives. Let | be a
vector in the plane. The directional derivative of u(x, y)
according to direction 1 is defined by

ou
al'fci:)sa+a—51n.cr

A ox Oy
where ¢ is the anti-clockwise ortentational angle from
x-axis to the vector 1, see Fig. 1 [2].

The mixed directional derivative may be obtained
from a generalization of the above definition of
direction derivative: let 1 and m be two independent
vectors in the plane. Then the mixed directional
derivative of u(x,y) according to directions, m is
defined by the directional derivative of /0l according
to vector m as:

SFu B [8)

20m om\oV

It is easily seen that

&u _ &u
Aom 2mal

Denote n, as the vector that is orthogonal to | such that
the anti-clockwise angle from n, to 1 is 72, see Fig. 2.
The vector m, is called the normal vector of \.

Given a vector 1 having angle a with x axis, we can
obtain the mixed directional derivative of u(x,))
according to vector | and its normal vector n, by simple
computation as

& u Ou _0 (au Ou

20m o axcoso:+$sma)cosﬁ

Q@—ucos a+g—sma)smﬁ

dy ig

Fig. 2. Vector | and its normal vector my in the plane.
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afi (8:4 Ou._.

—cosa+=—sin aj sing
Ox Oy

0 (0u Ou_.
ay(—cos a+-é—sm a)cos,ﬁ

Ox y
2 4
= %sinacosa+ﬂ(sin'a—cosza)
' Oxdy
2
-a—%sinacosa, )
oy

where = a- z/2 is the anti-clockwise angle from x
axis to nl, see Fig. 2. Similarly, the second order
directional derivative of #(x, y) according to 1 is derived
by

2 2 2
du 2 27
—=@—Ecos a+aﬁ—sm2a+a—“sm .

. xdy

it is seen from Eqs. 2 and 3 that the second order
directional derivatives of u(x, y) according to the vector
1 are dependent on the second order partial derivatives
of u(x, y) and the angle between the vector 1 and x axis.

3. Main results and proof
First, we have the following lemma.

Lemma 1. Let | be a vector in the plane and u(x, y)
be a bivariate function defined on the plane. A rotation
transformation is applied so that the y' axis of the new
coordinate frame ox'y' is coincident with the vector 1
and the new bivariate function is denoted by H#(x',)").
Then

2

Ou_ Oil 6:; u u 5u

a " 5P ayr- clon, 6x'

Proof. The conclusions can be easily shown by
noting that the rotation transformation has the
following form

x=x'sina+y’'cosa
=—x'cosaty’sina
We are now ready to prove the main result in this
paper. The continuity conditions between two cubic

bivariate polynomial triangular patches along their
common boundary are given by the following theorem.

Theorem 1. Consider two adjacent cubic polynomial
triangular patches z = u_())c, v) and z = v{(x, y) that share a
common boundary |=o0p with O={(xy, vo), P={x;,»),
see Fig. 3. If u(x,y) and v{x,y) satisfy the following
conditions:

(M ulxe, yo) = v(x0. Yo)»
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1

y y
P(x;, )

Fig. 3. Two triangular patches #(x, y) and w(x, y) with a common
boundary.

(D alx, y1)=wx), 30),

() j“( 190 "’(x.,y.),
I l

av) é:(xo,yoka‘;(xg,yo),

V) g—;(xo,yo)%(xo,ya),

2 2
(V1) a—?(xo,yo)=‘l§-’(xo,yo),
1) or

du

(VII) o
|

(%0sY0) = (X0 Y0) »

5!6

then the two patches u(x,») and v(x,y) join at the
common boundary 1 with C' continuity.

Proof. Without loss of generality, we assume that the
point O on the common boundary 1 lies on y axis
because any translation transformation will not change
the given conditions and conclusions. We then apply a
rotation transformation to make the y’ axis of the new
coordipate frame coincident with the common boundary
I=0P. For simplicity, the new coordinate axis x', y'
are still denoted as x, y and the transformed point (x.,
y) of (x., y.) are still denoted as (xi, y+). It can be
easily shown by simple computation that under the
above rotation transformation the conditions of the
theorem are converted into:

(I) H(Os yﬂ) = V(O, yﬂ):
I w0, y)=v(0, »),

aun a”(o,,])—-(o,yo
Ou _ov
'\ a(ﬂ,yo)—ax(ﬁ,yo),

V) Loy)=20omn).
i %
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2 2
v ZE0,5)=220,y,),
oy oy

u a’v
VII) L2(0,y,)=<—=(0,,) .
{VII) axay( Vo) axay( Vo)

The cubic bivariate polynomial (x, y) can be rewritten
as

u(x,y) = uy(X,y )X +p3(»), “4)

where -(x, y) is a quadric bivariate polynomial, p;(v) is
cubic polynomial on y. Noting that u(x,y)|._,=v(x.¥},_,
= p3(y), it can be shown that a unique cubic polynomial
pi(y) can be determined by the four interpolation
conditions (I), (I), (V} and (VI). Therefore, we have

U0 oo = VISP o=P3 )

which indicates that the two patches u(x, y} and wx, y}
are C° continuous along their common boundary.

We now try to prove that they are C' continuous
along their common boundary. Following Eq. 4, we

have
%1 =pi () ®)
x=0 Ix=0

du
a_u - a“z(xay)
ox

oy
ox

and

where #(x, y) is a linear bivariate polynomial, and p»(y)
is a quadratic polynomial with y. It can be derived from
the above equation that

& u(x,y) _Oui(x,y)
OxOy Oy
thus we have

ou(x,y)| _ agu(x,zg o
Ox L_D Pay) and Oxdy Pz ()

X ¥y (x,y): =1, (x,9)+pa(p),

x+py ()

It can be proven that the above quadratic polynomial
p>(¥) can be uniquely determined by the 3 conditions
(11D, (IV), and (VII). Thus we have

dulx,y)  _ov(x.y)
o | ox

=0 |x=0

=p,(), (6)

The conclusion of the theorem is thus obtained
following Egs. 5 and 6.

4. Construction of surface with
C' continuity around a corner

It is known that we need 10 independent conditions
to determine a cubic bivariate polynomial surface or a
cubic Bézier surface over a triangular patch.

Considering a corner vertex O of order n, with
neighbor vertices P, where the subscripts are always

Fig. 4. Cubic polynomiat surface patches defined on the triangles
around a corner vertex Q.

taken modulo #, we define a surface patch T°(P)=
T}(x,y) over each triangle AOPP,,, i=1,2, L, n, see
Fig. 4. Let |; and ny; be the edge vector OP, and its
corresponding normal vector.

Now we have the following theorem.

Theorem 2. Consider the surface patch T (x,y) over
triangle AOPPy. for a specific index i. If A4, j=0,1,
L,9, are given, then a cubic bivariate polynomial
surface T(x,y) can be unmiquely obtained by the
Jollowing 10 conditions in two bundles:

or? oT?
O TXO)=Ay0, HOY= Ay, =HO)= Ay
ox oy
2 3 2 3 b
T 0y= A, L (0)= 1, ZLi(0)= A
o Oxdy oy

3 = 3 — aTr3 —
(H) Tf(Pa')_li,(ﬂ Ta (P:'+l)_/1r',?’ a(P:‘)'/li,Ss
If

oT}
L PL)= A,
anl ( { I) 9

i+1

Proof. Without loss of generality, the point O is
assumed to be (0,0). Let the cubic bivariate poly-
nomial be represented by

2 2 2
T3 (xp)=aytax+ay+ax’ +agytay’ tagy
2 2 3
+agy atagxy tagy .
We can determine the coefficients aq, gy, az, @3, s, 9s
from condition bundle (I) as

A A
_ _ _ _h3 - —""5
ay=RAig A= A; ) =45 =75, A=A, as__é .

2
9

We now prove that the other coefficients can be deter-
mined by condition bundle (II). Suppose P;=(x.y;)
The unit vector of ]; is



Renjiang Zhang, et al.

e Es

and the unit vector of nl; is (r3, —r). Thus we have

o} _or’ _yi  OT)  «x
—=— ra— (8)

omy ox  fy2+y? O W

The first two cquations TX(P)=4,¢ and T)(P)=
A;; of condition bundle (lI) can be respectively
converted into

~’ 2 i ==
Xlagtxiya;txyiagtyiay=4,, 9
and
Xhe e XE Y@ X Vi ay+yl as=Ay, (10)
where

_ . s X )
A 1 l,-‘é—(a0+alx,-+a3}»,-+a3x,- Tagxy tasy; )s

_ k) 2
Ay =2, g+ X F QoY F AT T A Vi A )

From Eq. 8 the last two ¢quation:

7} 3
C;—T(P,+ 1)= A, can be respectively converted into
ny

;¢ and

il

T DU e (Y R

kL)

8 9
2 2 242 74170
,\/X,- +)’,2 ,\/x +J’1 ,\/Y +) A/x:' +yi
(11)
and
2 2 3 , 2
35 Yint +2xu13’f+| "'xi+ld +)’;3+1—2XF+1}’:'+|J
ag 7
-
e X2 ty2, NATARRTE
3x., 7
—#59;‘14, (12)
NXF TR
where
1 . R
A=y~ ———[-ax,ra\y—auxit Nas-asxy, rawil,
ity
|

Ay= li_f)_

i | ol
XV

. 2
[—aox i Ty — s+ 2(a3—as)X i Vi +aph,]

Eqgs. 9, 10, 11, 12 form a linear system with unknown
coetlicients dq, a7, dg, ao. It has unique solution if and
only if the following decterminant:

x} X X7y, NG
X, XLV XiuVer Vi
e 3xty, 2x Vi —x} ¥i-2xty, 3xp? -0
Jaind o S+ N
3x% Ve 2Pl —xha Vi 2XE Vi 3x %
«/-"rzﬂ RA N A/:‘Tf2+ Rave '\["r{l +pin A/;CIZH Vi
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or the following determinant

3 2 2 3
xy XiVi XiVi Yi
3 2 7, 3
D= Xiv -‘i+|_:’,-n-l Xix1 Vi1 _hll1 20
"
3xiy, 2x y2—x} yi=2xly, —3x;7

Bxtyin 2605 X0 Yio—2xkavie —3xh

We now prove that the determinant D=0 . There are
at most two among the four numbers x;, x;1), yi, ¥+ that
are equal to 0 as the three points O, P, P, form a
triangle. So there are three cases as follows:

(a) There are two zeros in {X; Xu1, ¥, V). The
possibilities are that x; =y OF xi4) = ;. Obviously the
determinant D=0 for both possibilities.

(b) There is only one zero in {x; xuy, Vi Viti}-
Without loss of generality, let y; = 0, then

x} 0 0 0
D= X} X Vi XieVirt Y
0 - 0 0

2 2 3 S92 2
Bt Vet DX Vh X Yin—2X i =3xiVin
= 6f 2 22 4

X ("'i+| +)’i+|)yi+| 20

(¢) None of the four numbers {x;, x;s, ¥, ¥i+; } 1S zer0.
Let y; = kx;, yist = kinixi1- Therefore,

X3 X, Xt v
D—' xj}u xlz+lyi+l x‘;ﬂ,vid-] ynj-"l
357y, 2xi—x} vi-2x?y, —3xy?
BXZ Y 2% Vi X Vi =24 Yin 3x00h
1 k, ki K}
1 ki Lo k2
=X?}’?+| ~
3k, 2k2-1 -2k, -3k
3kivy 2k3,—1 i, —2k,, 3K,
1 K k? ki
:0 fej ik, ki —k} ki —k}
0 k-1 —2i3-2k, —3ki-3k¢
0 - 1+| -1 2k3l | 2k:+l 3k,+l 3'k‘i1+l

=8y, (ke ) (3 + )RR+ 1)20,

by the fact ,—k,,,#0 as three points O, P, P, form a
non-degenerate triangle.

Therefore we have completed the proof of Theorem 2.

For a patch with corner vertex O and # neighbor
points P; for i = 1,2, L, n, see Fig. 4, we construct a
piccewise cubic polynomial surface 7(x, y) over the
patches as follows. First we sct 6 scalar values at the
corner point O, that is, the position value T(0), 2

. 3]
values of the partial derivatives %I(O), B—T(O) and 3
x y
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values of the second order partial denvatwes 6_(0)
T, T a
—(O) (O) At each end-point P; for i=1,2,L,
y
n, we set 2 scalar values, one is its position value 7(#))
and the other is the value of cross-edge directional

derivative %?(P,-). Thus we have 6 + 2» values to
Ili
determine the shape of the surface over the patches.

At each triangle AOPP.,, there are a total of 10
values, six values at the vertex O plus two values at P
and P;, respectively. From Theorem 2 the cubic
triangular surface patch T(x,y) over AOPP; can be
uniquely determined for all i=1,2, L, n.

It is easily shown that the adjacent patches T7(x,y)
and T7,,(x,y) join at their common boundary with C'
continvity by Eq. 2, Eq. 3 and Theorem 1. As each
triangular patch Tf(x,y) uses the same values at the
common corner O, thus the composition surface over
the patches is C* continuous at the corner vertex.

Thus a continuous piecewise cubic triangular poly-
nomial surface over the # patches could be constructed
from the given 6 + 2n values with C' continuous along
the boundary curves between adjacent triangular patches
and C’ continuous at the corner.

It is worthwhile to note that changes of the six values
at the corner will affect the shape over all the triangular
patches while changes of the two values at P; would
locally affect the shapes of the triangies 7; and T},

Our algorithm is cubic reproduction. That is, if the
values of the vertices of the patch and the comer are
computed from a cubic polynomial surface, the result
of our approach is exactly the same as the original
cubic polynomial surface. This can be easily seen from
the proof of Theorem 2. :

We now give the algorithm for designing a C'
continuous surface over the triangular patches around a
corner in the following.

Algorithm 1.

Input: 6 scalar values at the corner vertex, 2 scalar
values at each patch vertex, totally 6 + 2» values.

Output: a C' continuous piecewise triangular poly-
nomial surface around the corner.

Steps: For each triangular patch, do

Step 1. Compute ag, a), L, as by Eq. 7.

Step 2. Compute g, L, as by solving the 4 x 4 linear
system given by Eqs. 9-12.

Step 3. Convert the cubic triangular polynomial into
Bernstein-Bézier form.

5. Experimental results

In this section we show several examples of con-
struction of cubic triangular patches around a corner
that illustrate the behaviors of our approach. All

examples in the paper are the results of an imple-
mentation of the proposed algoritbm in a 3D user
interface design system in C++ developed at our lab.
The user can explicitly change the number and shapes
of the patches around the comer and control the values
at the corner and the patch vertices to adjust the shape
of the surfaces interactively.

Example 1. We use a sphere surface as a ground
truth sample an 1mate a part of the sphere
surface z(x,y)=+1-x —y using 6 triangular cubic poly-

nomial patches. The domain edge points are P,-=(g,0),

P D) (LY, pio(F0) (22D

474 47 4

Ps:(%i,—%% and the corner is O = (0, 0}, see Fig. 5(a).
We set the values at the comer as (4,4, 4y, U, Y., uw)|
(1,0,0, - —1) and the values at patch vertices
(u,u,,l)tD =(%§,0), i=1,2,L,6, computed following the

equation of sphere surface. The piecewise cubic
triangular patches generated by our approach are
shown in Fig. 5(b). The maximum approximation error
is 0.006, and the approximation result looks good.

Example 2. We use two surfaces with degree not
larger than 3 for testing the cubic reproduction property
of our approach. One surface is a saddle surface z = xy,

J
7 &
X
4 % R
P, £
(@) (&)

Fig. 5. Polynomial approximation to part of the sphere surface
using 6 triangular patches: (a) domain patches; (b) piecewise cubic
triangular polynomial surfaces.

(@ ®

Fig. 6. Our approach can reproduce exact cubic surfaces: (a) a
saddle surface; (b) a cubic surface.
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(a) (b

(©) (d)

Fig. 7. Different examples using 8 triangular patches with different user inputs: (a) approximation to a sphere surface; {b) large positive
mixed derivative value for comer vertex; (¢} large negative mixed derivative value for corner vertex; (d) adjustment of the position of one

boundary point and the partial derivative value of the comer vertex.

see Fig. 6(a), and the other is a cubic surface z=x" ~
3x” + 2xp + y, see Fig. 6(b). We use 4 triangular patches
in our tests. The reconstructed surface patches are
exactly the same as the original surfaces in both cases.

Example 3. To illustrate the flexibility of our approach,
we use an example with eight patches around the
corner. We can easily adjust the values used in the
algorithm to control the shape of the piecewise surface.
The result of approximating a sphere surface is shown
in Fig. 7(a). We then adjust the values of mixed
derivatives of the corner vertex, with large positive
values, see Fig. 7(b) or with large negative values, see
Fig. 7(c). Fig. 7(d) shows a result when the user adjusts
the position of one boundary point and the partial
derivatives of the comer vertex. The corresponding
smooth rendering effects are shown on the right side
for each of the example.

6. Conclusions

In this paper, we proposed a novel approach for
constructing C' continuous surface over arbitrary trian-
gular patches around a corner. The approach is derived
based on the mixed directional derivatives between the
common boundaries between two adjacent patches.
The result surface is piecewise cubic polynomials with
the advantage of cubic reproduction. The approach is
simple and fast. The user can easily control the shape
of the interpolation surface by adjusting the input
values. We demonstrate the applicability and flexibility
of the approach by several experimental results.

The presented approach still has much to do for
improvements and extensions. We should consider the
extension to ptecewise parametric surface construction

over triangulation with arbitrary topology. It is also
much worthwhile to extend our approach to build high
order continuous surface over patches around a comer
vertex. We believe that this extension is feasible but not
straightforward.
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