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Abstract 一 This paper presents a novel approach for constructing a piecewise triangular cubic polynomial surface with C기 

continuity around a common corner vertex. A C1 continuity condition between two cubic triangular patches is first derived 
using mixed directional derivatives. An approach for constructing a surface with Cl continuity around a corner is then 
developed. Our approach is easy and fast with the virtue of cubic reproduction, local shape controllability, C1 continuous at 
the corner vertex. Some experimental results are presented to show the applicability and flexibility of the approach.
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1. Introduction

Surface design is an important field in computer 
aided geometric design and computer graphics. A 
widely accepted and popular way in s니rfkce recon­
struction from the scattered data is the use of smoothly 
joined triangular Bernstein-Bezier patches or B-spline 
patches. The resulting surface must be visually smooth, 
that is, the patch boundary and across-boundary data 
must agree with the given values and this provides C or 
G contin나ity for the overall surface. The compositions 
of Bezier triangles that meet with G1 continuity have 
been developed by many researchers [5,10,11]. The 
twist compatibility problem [18] or the vertex enclosure/ 
consistency problem [12] which arises when joining 
some polynomial patches with G1 continuity around a 
common vertex is a difficult problem. For example, let 
5 triang니lar patches Th i= 1, 2, ...,5 meet at a comer as 
in Fig. 1. Starting from the first patch Tu patch Ti+} 
co니Id be determined by the continuity conditions with 
Tt along their common boundary, i= 1,2, 3,4. But 
satisfying the continuity condition along the common 
boundary between patch T5 and 7[ will present serious 
difficulties.

The earliest schemes that addressed the vertex 
consistency problem are Clough-Tocher-like domain 
splitting methods [1,13,16]. The triangles are divided 
into three sub-triangles and quartic G1 patch per sub­
triangle is prod니ced to interpolate positions and normals. 
The free parameters are employed in order to control 
the shapes.

The Gregory technique [3,4] seeks to construct patches 
on the faces formed by a net of intersecting curves in 
space. It uses the curves themselves and cross-boundary 
tangent information. From the given information, sub­
patches are formed at each comer of a face and these 
are then blended to form the full patch that join 
together with tangent plane continuity. A number of 
variants and extensions to the basic method have been 
investigated by several researchers [15,19]. The exten­
sions of the technique to give higher order continuity 
are studied in [7,8],

Loop presents a piecewise G} spline surface composed 
of sextic triangular Bezier patches, one per triangle [9]. 
Optional shape parameters are available for additional 
local control over the shape of the surface. But 
unwanted surface undulations occur d니e to severe 
constraints on the second derivatives along boundary 
curves at each end-point. The recent work of [5] 
presents an interpolating q나intic G] triangular spline 
surface, which is a generalization of Loop's scheme [9]. 
The basic idea is to use a regular 4-split of each 
triangle so that the constraints between each end-point 
of the boundary curves are relaxed and an interpolating

Fig. 1. Triang니lar patches around a comer.
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curve network can be built with。니t unwanted 나ndula- 
tions. Both strategies lead to linear systems of equations 
with a circulant matrix, which will not give a sol니tion 
in general if an even number of patches meet at a 
comer [5,9].

Furthermore some special approaches can be found 
in [6,14,17], in which various restrictions are made on 
the inp니t data, thus their methods are not general 
enough in practice.

In this paper we present a novel approach to 
construct a piecewise triangular polynomial surfaces 
with C1 continuity around a comer vertex. For easy 
evaluation and manipulation one often aims at a local 
method which uses low degree polynomial patches. 
Cubic polynomials are 나sed in our method. The basic 
idea is to use and keep the mixed directional derivatives 
along their common boundary between adjacent patches. 
The result surface is piecewise cubic triangular 
polynomials and is C] continuous across the boundaries 
between different patches and is C1 conti- nuo니s at the 
comer vertex. Our approach is easy to 니se, the res니It 
surfaces can be quickly obtained by solving a simple 
4x4 linear system which is always non-degenerate. The 
user can adjust the inp니t values to control the shape of 
the surface interactively, which makes it a new and 
useful tool for shape design in CAD.

2. Preliminaries

2.1. Representations of triangular surfaces
Let T be a non-degenerate trian이e in the plane with 

vertices 7} = (x,,乃)，Z=l,2, 3. Any point P = (x,y) 
within T can be expressed uniquely as

P=uT}+vT2^-wT3

in terms of barycentric coordinates (払 v, w), w +v + w 
= l,z/2 0, 卩 그 0, w>0 that can be obtained by solving 
the following equations 

known that the degree n Bemstein-Bezier polynomials 
and the polynomials in 1丄 can be converted into each 
other using Eq. 1[2].

2.2. Directional derivatives
Let u(x, y) be a bivariate contin니ous function with 

continuous second order partial derivatives. Let 1 be a 
vector in the plane. The directional derivative of u(x, y) 
according to direction 1 is defined by

8허 du 丄 3" .—=—cosa+—sma,
31 dy

where a is the anti-clockwise orientational angle from 
x-axis to the vector 1, see Fig. 1 [2].

The mixed directional derivative may be obtained 
from a generalization of the above definition of 
direction derivative: let 1 and m be two independent 
vectors in the plane. Then the mixed directional 
derivative of u(x, y) according to directions, m is 
defined by the directional derivative of du/d\ according 
to vector m as:

业쓰=으 [으).

513m Qml 지丿

It is easily seen that 
d1 u _ Wu 

dWm 3m 지

Denote n( as the vector that is orthogonal to 1 s니ch that 
the anti-clockwise an이e from 11)to 1 is 勿2, see Fig. 2. 
The vector n( is called the normal vector of 1.

Given a vector 1 having angle a with x axis, we can 
obtain the mixed directional derivative of u(x, y) 
according to vector 1 and its normal vector 11)by simple 
computation as

8%
513m

cos?으 sin tz) cos f3

x = ux}+vx2+^x3

丿=奶+炒+加)勺 (1)

1=w+v+w

The Bemstein-Bezier polynomial or the Bezier triangular 
surface of degree n over triangle domain T has the 
form [2]

+ costz+|^sin6z)sin^

TXP) = T\u,v,w)= £ B"Jk(u,v,w)TiJJc
i+j+k=n

where ("，火w)=器"面,板景.Let

Fig. 2. Vector 1 and its normal vector n( in the plane.be the polynomial set with degree no larger than n. It is

n” 리 :、財冲, 缶产 r
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cos 苧 sin aj sin a

d (du . du . ) n—cosq+——sma cosp 
oy J

2 29 U • . du. - 2 2\=----- ------------------------  a-cos a)
dx dxdy

a u * re----- smacosa, (2)
成

where ”= a- 刀72 is the anti-clockwise an이e from x 
axis to nl, see Fig. 2. Similarly, the second order 
directional derivative of u(x, y) according to 1 is derived 
by

ou du 2 x d u • .o u • 2
-一——cos a+----- sin2 a+——sm a.
51 必 2 My sy2

It is seen from Eqs. 2 and 3 that the second order 
directional derivatives of w(x, y) according to the vector 
1 are dependent on the second order partial derivatives 
of z/(x, y) and the angle between the vector 1 and x axis.

3. Main results and proof

First, we have the following lemma.

Lemina 1. Let \ be a vector in the plane and u(x, y) 
be a bivariate function defined on the plane. A rotation 
transformation is applied so that the yf axis of the new 
coordinate frame ox'y' is coincident with the vector 1 
and the new bivariate function is denoted by . 
Then

du_ du 서瓦 _ d^u
지 卽' dl2 Oy'' SlSn, dxfdyf，

Proof. The conclusions can be easily shown by 
noting that the rotation transformation has the 
following form

e
f'sina+y'cosa

=-x' cos a+yf sin a

We are now ready to prove the main result in this 
paper. The continuity conditions between two cubic 
bivariate polynomial triangular patches along their 
common bo니ndary are given by the following theorem.

Theorem 1. Consider two adjacent cubic polynomial 
triangular patches z = y) and z = v(x, y) that share a 
common boundary l = op with。=(而,死)，F = 
see Fig. 3. If u(x, y) and v(x, y) satisfy the following 
conditions:

(D 〃(私 *o)  = UXo,必o),

Fig. 3. Two triangular patches u(x, y) and u(x,*) with a common 
boundary.

(II) 〃(X|,)，1) = V(X1, •由)，

(III) 祟(X1，)，1) =祟(XQ，|),
OI1[ Oil]

(IV) 票(由0)=宇(x(“o),
OX ox

(V) g으(乂0，，0)= 宇(XoJo) ,

dy dy
2 2

(VI) 竺 3o，Vo) = 의(乂0疗0)，

기 ar
2 2

(VH)於(乂0疗0)= M卩(乂0疗0), 

기。H] 기。H]

then the two patches u(x. y) and v(x, y) join at the 
common boundary 1 with C1 continuity.

Proof. Without loss of generality, we assume that the 
point O on the common boundary 1 lies on y axis 
because any translation transformation will not change 
the given conditions and con이니sions. We then apply a 
rotation transformation to make the yf axis of the new 
coordinate frame coincident with the common boundary 
1 = OP. For simplicity, the new coordinate axis xr,yf 
are still denoted as x,y and the transformed point (x/, 

of (x*,y*)  are still denoted as (x*,y*).  It can be 
easily shown by simple computation that under the 
above rotation transformation the conditions of the 
theorem are converted into:

(I) "(O,yo) = v(O/o),

(II) 讯Qyi) = v(0,yi),

(III) 祭(以)=字(M), 
ox ox

(IV) 夺(0,%) =穿(0,%),
ox ox

(V) 票(0,%)=穿(0,%),
oy dy
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2 2
(VI) 快(o,%) = 익 (O,j，o),

dy dy
月2 月2

(VII) 拽(0,凡)=$(0,凡)， 
oxoy oxoy

The cubic bivariate polynomial 이(x, y) can be rewritten 
as

"(X,*)  = "2(x,*)x+P3(y),  (4)

where u2(x, y) is a quadric bivariate polynomial, p3(y) is 
cubic polynomial ony. Noting that w(x,^)|x=0 = v(x,y)|x=0 
= /?3(y), it can be shown that a unique c니bic polynomial 
p3(y) can be determined by the four interpolation 
conditions (I), (II), (V) and (VI). Therefore, we have

"(W = g，)L=o =P3 0),
which indicates that the two patches u(x.y) and v(x,y) 
are C*  contin니ous along their common boundary.

We now try to prove that they are C1 continuous 
along their common boundary. Following Eq. 4, we 
have 

du
叽=0

=P3 (y) (5)
흐

©x=0

and

du du~>(x,y) , 、 , 、 /、
2=F一小+"* ：=”)+必),

where ux(x.y) is a linear bivariate polynomial, andp2(y) 
is a quadratic polynomial with y. It can be derived from 
the above equation that
巻=判立 )

oxoy dy

thus we have

■P2(y) and
扌讯嵐尹）

=Pi 3)

It can be proven that the above q니adratic polynomial 
p2(y) can be uniq니ely determined by the 3 conditions 
(III), (IV), and (VII). Thus we have

如(x,y)
dx 3

=心),
x=0

(6)

The conclusion of the theorem is thus obtained 
following Eqs. 5 and 6.

4. Construction of surface with
C1 continuity around a corner

It is known that we need 10 independent conditions 
to determine a c니bic bivariate polynomial surface or a 
cubic Bezier surfece over a triangular patch.

Considering a comer vertex O of order n, with 
neighbor vertices Ph where the subscripts are always

Fig. 4. Cubic polynomial surface patches defined on the triangles 
around a comer vertex O.

taken modulo n. we define a surface patch 7?(尸)= 

7?(私，) over each triangle AO/상七+1，i =，2, £, n, see 
Fig. 4. Let 1/ and nh be the edge vector OR and its 
corresponding normal vector.

Now we have the following theorem.

Theorem 2. Consider the surface patch over 
triangle £\(가산知 for a specific index i. If 入顷 j = 0, 1, 
L, 9, are given, then a cubic bivariate polynomial 
surface T^(x,y) can be uniquely obtained by the 
following 10 conditions in two bundles:

(I) 7?(。) = 儿,0, 늢(。)=知, 京(。) = 知

9 3 9 3 2 3사 T A T 서 丁'
으슥(。) = 知, 尝(。) = 知, 으스(。) = 知 

dx dxdy dy

(II) ")=知, 뉘)=兀,7, 爭

dr3
5n,'i+i

Proof. Without loss of generality, the point O is 
assumed to be (0, 0). Let the c니bic bivariate poly­
nomial be represented by

Tf(x,y) = a()-\-a}x-\-a2y+a3x2jra^xy+a5y2+a6)^
2 2 3+a7y a-^a^xy + 时.

We can determine the coefficients aQ, ax. a2, a3, a4, a5 
from condition bundle (I) as

시0 = %0, &1=儿,1，°2 = %,2, °3 = ~^，시4 = %2, 시5 = -?三

⑺

We now prove that the other coefficients can be deter­
mined by condition bundle (II). Suppose 户,= (x如力) 

The unit vector of L is
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侦느忐"心

and the unit vector of nl; is (r2, 一尸】)• Thus we have
흐2=竺車―흐2」」 (8)

an>,故川訐乔dy厲晦

The first two equations T/(PZ) = and 7?(R) = 
儿 7 of condition bundle (II) can be respectively 
converted into

对％+建財(9)

and

沱+1시 6+x%l* ，+W7+X 汁 1•诺+1%+)%1。9=刀2， (10)

where

A! = \6-(aQ+aiXi+a7yi+a3x]+aAxiyi+a;y1'),

缶=九,7一(％ +叫改+「"况+1+%：珞1+%七+1北+1 +角)，冨)

di3
From Eq. 8 the last two equations —^(P,) = 2； 8 and

8厂3 1
——-(P/+1) = 2/9 can be respectively converted into

3斜~丄2电，；-对丄毋-2殍州3初；“ _ A
/ %+ / =샤7+ .  ^8—-1 a9 — 彳3，

Jx]+y] J사+yj Jxj+y] Jx?+y?

(11)

and

3耳十讶计i 3+1—2珞Li
} %+—f ai+ —/。 ％

Jxj+l+yj+i Jx%一]+]%] 「顷+i

-善些느%=4， (12)
Jx%「顷?+1

where

刀3 = 8 ' [一您丿&+。1* 厂CLP净+ 20厂务)：汇»서-々4评],

」효頌

i匚底늝

[一4「2万+] +叫山+1 -a4xj+, +2(%—%)士+ 讶计 1 +잌，讦+! ]

Eqs. 9, 10, 11, 12 form a linear system with unknown 
coefficients a6,(77,6z8, a9. It has unique sol니tion if and 
only if the following determinant:

电

3异+少+] 2河+]*+]—舟+i •讨+]—2对+山•+]

Jx幻顼+] 妳]顼+| Jx幻顼+]

x?+i x}+]yi+l x《+[j加！

3辫J* 2瑚-点 •讨-2x凯.

/xj+yj 农顼 Jxj+yj

or the following determinant

D =

3x?+l*卜 1

J初 X为 J，？

工?+1义+1 x?+n+i yKi
2x 必-셔 尖一 2x凯 _3x》，？

x?+i j私-2x?+m+i -3x,+房+1

We now prove that the determinant D部.There are 
at most two among the four numbers xh xi+x.yhyi+x that 
are equal to 0 as the three points O, Ph Pi+i form a 
triangle. So there are three cases as follows:

(a) There are two zeros in {为,冷+1,乃，乃+i}・ The 
possibilities are that 为=弘+1 or xz+i =乃. Obviou이y the 
determinant D^O for both possibilities.

(b) There is only one zero in {羽，x汁i,北，3+1}. 
Without loss of generality, let 乃=0, then

xj 0 0 0

)_ X?+i 好+1乃+1 XH-1Z'+1 •讨+1

0 -xj 0 0

3x^+ 2・"卜]少％][ J，%一2x%_[j*+[  -3一旳+[少知]

=x?(x%i+*+i)y?+i  구“)

(c) None of the fb 니 r numbers {xh y/+i} is zero.
Let yi = kpch yi+\ = ki+\Xi+\. Therefore,

X*  xjyi 弱

D — :나+1 好+。，5
L丿

3无泌 2x^x1 -3加

裁 2冷+房+1-对+] 用"-2辞+少+] -3不鬲

1 b kJ k]

6 6 1 馅+1 於H *?+l
3佑2庵一1 照一2佑 -3k]

3加2谿-1紆+1—2虹—3焰

1佑 碎 碎

0 kq-kj 條 1-屁 站iF

0 -履-1 -2照-2馅 -3底-3紆

0 ~kj+1 -1 -2k^+}-2kl+] -3kj+1-3kj+]

= t 濟+1 (k-ki+1 )4(局 +1)(原 1 + 1) 구上 0, 

by the fact k-ki+]^Q as three points O> R Pi+] fonn a 
non-degenerate triangle.

Therefore we have completed the proof of Theorem 2.
For a patch with comer vertex O and n neighbor 

points Pi for i = 1, 2, L, n, see Fig. 4, we construct a 
piecewise cubic polynomial surface T(x, y) over the 
patches as follows. First we set 6 scalar values at the 
comer point O, that is, the position value 7(。)，2 
values of the partial derivatives 票(。), 히、Q) and 3 

ox dy
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T values of the second order partial derivatives 으——
Q 스 2

——((9), —-(O). At each end-point Pj for i= 1, 2；L,
Sxdy dy2

n, we set 2 scalar values, one is its position value T(Pj) 
and the other is the value of cross-edge directional
.. dT

derivative ——-(P ). Thus we have 6 + 2〃 values to
凯

determine the shape of the surface over the patches.
At each triangle A<9PzP/+i, there are a total of 10 

values, six values at the vertex O pl니s two values at P, 
and Pi+X respectively. From Theorem 2 the cubic 
triangular surface patch over AOPP汁】can be
uniquely determined for all i = 1, 2, Z, n.

It is easily shown that the adjacent patches 
and T^+1(x,y) join at their common boundary with C1 
continuity by Eq. 2, Eq. 3 and Theorem 1. As each 
triang니ar patch uses the same values at the
common comer (9, thus the composition surface over 
the patches is C2 continuous at the comer vertex.

Thus a continuo니s piecewise cubic triangular poly­
nomial surface over the n patches could be constructed 
from the given 6 + 2〃 values with C1 continuous along 
the boundary curves between adjacent triangular patches 
and C2 continuous at the comer.

It is worthwhile to note that changes of the six val니es 
at the comer will affect the shape over all the triangular 
patches while changes of the two values at 巳 would 
locally affect the shapes of the triangles 7] and Ti+\.

Our algorithm is cubic reproduction. That is, if the 
values of the vertices of the patch and the comer are 
computed from a cubic polynomial surface, the result 
of our approach is exactly the same as the original 
c니bic polynomial surface. This can be easily seen from 
the proof of Theorem 2. 、

We now give the algorithm for designing a C! 
continuous surface over the triangular patches aro니nd a 
comer in the following.

Algorithm 1.
Input: 6 scalar values at the comer vertex, 2 scalar 

values at each patch vertex, totally 6 + 2z? values.
Output: a C1 continuous piecewise triangular poly­

nomial surface aro니nd the comer.
Steps: For each triangular patch, do
Step 1. Compute 시暗 L, a5 by Eq. 7.
Step 2. Compete a畐 L, a9 by solving the 4 x 4 linear 

system given by Eqs. 9-12.
Step 3. Convert the cubic triangular polynomial into 

Bernstein-Bezier form.

5. Experimental results

In this section we show several examples of con­
struction of cubic triangular patches around a comer 
that illustrate the behaviors of 이h approach. All 

examples in the paper are the results of an imple­
mentation of the proposed algorithm in a 3D user 
interface design system in C++ developed at o니r lab. 
The user can explicitly change the number and shapes 
of the patches around the comer and control the values 
at the comer and the patch vertices to adjust the shape 
of the surfaces interactively.

Example 1. We use a sphere surface as a ground 
truth sample and approximate a part of the sphere 
surface z(x,y) = -y 니sing 6 triangular cubic poly­

nomial patches. The domain edge points are 牛停,。), 

r=(孚乎),p疔呉辱牛普,。),牛(-乎,-乎),

and the comer is 0 = (0, 0), see Fig. 5(a).

We set the values at the comer as (w, ux, uy, uxx, uxy, uyy)\ = 
(1, 0, 0, -1, 0, -1) and the val니es at patch vertices 

ri
comp니ted following the

equation of sphere surface. The piecewise cubic 
triangular patches generated by our approach are 
shown in Fig. 5(b). The maximum approximation error 
is 0.006, and the approximation result looks good.

Example 2. We use two s니r仏ces with degree not 
larger than 3 for testing the cubic reproduction property 
of our approach. One surface is a saddle surface z = xy,

(b)
Fig. 5. Polynomial approximation to part of the sphere surface 
using 6 triang니ar patcM: (a) domain patches; (b) piecewise cubic 
triangular polynomial surfaces.

Fig. 6. Our approach can reproduce exact cubic surfaces: (a) a 
saddle surface; (b) a cubic surface.
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(시) (b) (c) (d)

Fig. 7. Different examples using 8 triangular patches with different user inputs: (a) approximation to a sphere surface; (b) large positive 
mixed derivative value for comer vertex; (c) large negative mixed derivative value for comer vertex; (d) adjustment of the position of one 
boundary point and the partial derivative value of the comer vertex.

see Fig. 6(a), and the other is a cubic s니rface z = 疽 一 

3xy^ + 2xy see Fig. 6(b). We use 4 triangular patches 
in our tests. The reconstructed surface patches are 
exactly the same as the original s니rf代ces in both cases.

Example 3・ To illustrate the flexibility of our approach, 
we use an example with eight patches around the 
comer. We can easily adjust the values used in the 
algorithm to control the shape of the piecewise surfece. 
The result of approximating a sphere surface is shown 
in Fig. 7(a). We then adjust the val니es of mixed 
derivatives of the comer vertex, with large positive 
values, see Fig. 7(b) or with large negative values, see 
Fig. 7(c). Fig. 7(d) shows a result when the user adjusts 
the position of one boundary point and the partial 
derivatives of the comer vertex. The corresponding 
smooth rendering effects are shown on the right side 
for each of the example.

6. Conclusions

In this paper, we proposed a novel approach for 
constructing C1 continuous surface over arbitrary trian­
gular patches around a comer. The approach is derived 
based on the mixed directional derivatives between the 
common boundaries between two adjacent patches. 
The res니It surface is piecewise cubic polynomials with 
the advantage of cubic reproduction. The approach is 
simple and fest. The 니ser can easily control the shape 
of the interpolation surface by adjusting the input 
values. We demonstrate the applicability and flexibility 
of the approach by several experimental results.

The presented approach still has much to do for 
improvements and extensions. We should consider the 
extension to piecewise parametric surface construction 

over triangulation with arbitrary topology. It is also 
m나ch worthwhile to extend o니r approach to build high 
order continuous surface over patches around a comer 
vertex. We believe that this extension is feasible but not 
straightforward.
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