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ABSTRACT
A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or
compliant. The Helmholtz integral equation and its normal derivative integral equation are adopted

simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across

it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal

velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of
the thin body has to be discretized. The method is validated by comparison with analytic and/or
numerical results for acoustic scattering and radiation from several surface conditions of the thin body;

the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-

absorbing material.

1. Introduction
Studies show that the conventional boundary element
method (BEM) using the Helmholtz integral equation
fails to yield reliable results for thin bodies. The major
reason for this failure comes from the nearly singular
integral owing to the mesh on one side of the thin body
being too close to the mesh on the opposite side.

Seybert et al. {1] adopted a multi-domain BEM
formulation for the thin-body acoustic problem in which
a fictitious interface surface is constructed to divide the
acoustic field into several subdomains. As a result, the

Helmholtz integral equation for a fictitious thick body
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enclosed by the thin body surface and the fictitious
surface is to be solved in a straightforward manner.
Even though the concept of the multi-domain BEM is
simple, it requires great effort in preprocessing to
construct the mesh and also results in a very large
system of equations if the fictitious surface is relatively
large.

Martinez [2] defined the failure as a thin-shape
breakdown (TSB) and showed that a normal derivative
of the Helmholtz integral equation approach provides a
robust formulation for the thin body with a systematic
analysis for a rigid wall or a state of continuous normal
motion of flapping. However, the normal derivative
integral equation has the hypersingular integral in the
order of O(1/r’) so that the special technique to
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regularize the hypersingular integral is necessary.

In a direct boundary element method (DBEM)
approach, Wu & Wan [3] proved that the same failure
problem cannot be fixed by DBEM because the
Helmholtz integral equation becomes degerate. They
solved the integral equation
formulation for the thin body with a less singular
normal derivative integral equation, derived by Maue [4]

normal derivative

and later by Mitzner [5]. Detailed discussions about the
of the hypersingular integral is
summarized in [6]. Recently, the method was applied to
a regular body with thin fins and a vibrating surface on
the regular body by solving a mixed thin-body and
regular-body integral formulation [7].

In addition to the above mentioned works, different
approaches have been carried out for the thin-body
problem. Hamdi and Ville [8] and Wu et al. [9] used a
variational formulation. Malbéqui e al. [10] used an
indirect boundary element method (IDBEM) to'a duct,
which was assumed to be hard-walled both inside and
outside. Martinez, using a modal boundary integral
technique, analyzed the acoustic diffraction due to a

regularization

sound source by the open-ended cylindrical duct. Here
the interior surface of the duct was rigid [11] and/or
with a compliant lining [12]. Treatment of the thin-body
problem with a compliant lining by using DBEM for the
normal derivative integral equation formulation was not
reported.

In this paper, a new DBEM is reformulated to extend
to thin bodies with rigid and compliant surface using the
combined Helmholtz integral equation and the
combined normal derivative integral equation. This can
be done by removing the normal velocity continuation
assumption across the thin body. The hypersingular
integral is regularized by using the Maue's less singular
normal derivative integral equation. The numerical

integration is carried out using a standard Gaussian

quadrature. The collocation points are at the nodal
points for the combined Helmholtz integral equation and
inside each element for the combined normal derivative
integral equation to confirm the condition at the corner
and the vertex. The knife-edge effect is treated by
adopting a quarter-point element {14-16].

2. Integral formulation for the thin body

coated in different materials

Fig. 1 depicts the mathematical notations for a thin
body coated in different materials on each side in the
homogeneous acoustic medium. The acoustic field is
temporally divided into two parts (the exterior
subdomain (' and the interior subdomain Q) by an
imaginary surface, s, to formulate a new integral
equation for the thin body [1, 3]. The thin body is
mathematically discribed by a neutral surface, S, because
the surface exposed to each subdomain is assumed to be

coated in different materials. The velocity potential in
the subdomain €~ is denoted by ¢, the velocity
potential in Q° is ¢’ and the acoustic source is &, .

The velocity potential is defined as v =-V¢ and the

+iaxt

e convention for time harmonic analysis is used.
Then, the acoustic pressure can be calculated by
p=ikpa$, where i=-1, k=w/a,is the wave
number, p, is the density of acoustic medium and a4, is

the speed of sound.

By applying Green's theorem to the Helmholz
equation, the Helmholtz integral equation for each
subdomain is obtained as shown below:

C'(P)¢"(P)

[ cpgtQ 600

on on

. I
$°(Q)dS(Q)

and
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C(P)(P)
- G(P,Q)Wa(g)—ﬁG(P D 4-(0)dS(Q) @)
S+ n ﬁn

+4rd, (P, X,)
where P is the collocation point, O is the secondary
source point on the surface and X, is the acoustic
source point. The surface integral is applied to S +s.
The symbols C~,C* represent the solid angles at P in
the exterior and interior subdomains respectively. The
kernel function G(P,Q) is the free space Green's

function, G(P,Q)=¢"™ /r  in which r =(Q - P|.
Adding equation (1) and equation (2) results in a
single equation (the combined Helmholtz integral
equation):
C (P (P)+C (P (P)

- ‘LG(RQ)(———‘?";Q’ - —5¢"Q’de(Q)

én 3)

+[, 2L 0)- 4 (@))asc)

+ 4, (P, Xg)

The first part of right hand side, usually canceled for the
rigid surface because of the continuous normal velocity,
is included in the above equation. The integrations on
the imaginary surface are canceled because of the
continuity of pressure and particle velocity on that
fictitious surface.

By taking the normal derivative to equation (3),
another combined normal derivative integral equation is

obtained:
oy 08 (P) o6 (P)
c(P)y————= on, +C (P)y———— on,
_ IaG(P 096 o8 (Q)] SO)
e oG @
+ LBL‘;Q)(W(Q)— #(0))dS(©Q)
4y 08B Xs)

n,

The general boundary conditions on both sides are

given by:

O _ oy
on on

=a¢ +§ (5a 5b)

where a* =ipak¥* are cocfficients related to the
acoustic admittance(Y*) and B* are normal vibration
velocities on each side of the thin body surface.
Special conditions to treat the diffraction effect at the
knife edge are:
¢ =9 (50)
After applying the boundary conditions, equations (5a)
and (5b), to equations (3) and (4), two integral equations
with two unknowns ¢' and ¢~ on the surface can be
deduced as:
C'¢ (P)+C ¢ (P)
- L(a*G(P,Q)fG(P Q’)qt (QMS(Q)

©)

oG, Q’]¢ (0)S(Q)

+j’(a G(P,0)~

+[ (B + B)G(P,0)dS(Q) + 474, (P, X,.)
and

2rwa’ ¢t (P)-2ra ¢ (P)

_t[,. 6.0 #6P.0) ..

= L[a on " onom ]¢ (QXS(Q)
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3. Treatment of problems in the integral

equation
It is well known that the integration has some

problems: the integration of the singular kernel, the
treatment of singularity near the knife edge, the non-
uniqueness of the solution, and the treatment of the

corner and the vertex. The following approaches were
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adopted to solve these integration problems.

First, the kernel &G /Jn,dn is hypersingular in the

order of O(1/r*); therefore, an acceptable result cannot
be obtained in this case. So, it is essential to reduce the
order of singularity. Putting collocation points inside
each element satisfies the C' continuity condition and
makes it possible to use the following important relation
derived by Maue [4] and later by Mizner [5]:
8G
i gman?

8
= [ (A, x V,G)-(ix V) +k*(A, -A)GgldS ®

The order of singularity then becomes O(1/r*). And
adopting the local polar coordinates reduces the order of
singularity to O(l/r) again. Now, the standard
Gaussian quadrature can be applied to the reduced
integrations. In this paper, the singular integration is
carried out using the method in [13], based on the
Cauchy principal integration. \

Second, the acoustic velocity potential has a
singularity at the knife edge in the order of O(1/ Jr ).
Even using a fine mesh of higher-order elements will
not produce sufficient accuracy. By using node-shift
elements or quarter-point elements, the knifc edge
singularity can be overcome easily [3, 15, 16].

Third, the non-uniqueness problem (occurring at some
frequencies related

corresponding interior region of the body) is not severe

to the eigen values of the

in the thin body case. Because the number of eigen
values for a particular geometry is given approximately

as:

B vk®
Meen = o1

where V is the volume of the body. For a thin body, V' is

&)

zero. Therefore, it is not necessary to consider the non-
uniqueness problem in this case [7].

The final problem is how to treat the solid angle effect

at the corner or the vertex. The collocation points that
are placed inside the elements cannot represent the solid
angles at the corners or vertexes. We used two kinds of
collocation points on each element. For equation (6),
collocation points are placed on the boundary of the
element to calculate the correct solid angle. For equation
(7), collocation points are placed inside the elements to
use the equation (8). The configurations of the master

elements for equations (6) and (7) are shown in Fig. 2.

4. Numerical implementation

An isoparametric eight-node quadrilateral and six-

node triangular element is used in this paper. i.e.,

x(E)=Y N (X, (=123
- “ - , (10)
HE) =D N (&) (a=12,60r8)

A system equation can be deduced from equations (6)

and (7).
[ ) +H +} {+}
b= . (1)
A, A ||® F

Components in the matrix are defined as appendix A:

5. Results and discussions

To verify our present method, firstly, the scattering
problem of a plane wave from a rigid circular disk of

radius, g, is tested. The incident velocity potential is

given as #s =€ For the comparison of our results
with {3], the same mesh is used: 16 eight-node
quadrilateral elements and 32 six-node triangular
clements, as shown in Fig. 3. Calculated non-
dimensional wavenumbers, ka, are 1, 2, 3, 4 and 5. For

the rigid body, the admittances on both surfaces,
a',a | are zero and B*,p" are also set to zero. Fig.s

4 shows the real and the imaginary parts of the relative
scattered velocity potential on the illuminated side. By
comparison with the analytic solution, both results in [3]



and the present calculations show excellent agreements.

The second case tested the radiation by a vibrating
circular disk. The radiation problem has the exactly
same solution of the scattered field. However, the
boundary conditions to calculate for each case are

different. For the scattering problem, a*,a”, ', are
zero; and for the radiation case, a*,a” are also zero but
B.p are set equal to the surface-vibrating velocity.

The test results are depicted in the Fig. 5. Good
agreement with the analytic solution is also observed.
The next problem is the scattering of an incident plane
wave from a rigid thin-walled cylinder open at one end.
The radius of the open cylinder is a and the length is 2a.
The mesh used to model this open cylindrical shell
consists of 40 eight-node quadrilateral elements and
eight six-node triangular elements, as shown in Fig. 6.
Quarter points (flooded circle) rather than middle points
(hollow circle), are used for the elements adjacent to the
knife edge, which is at the open end of the cylinder. The
incident plane wave has a velocity potential of unit
amplitude and is assumed to impinge on the cylinder
from the open end. The effect of locations of collocation
points is shown in Fig. 7. Herein, only the mesh (b) in
Fig. 2 is used for the present calculation and the result is
compared with that of Wu and Wan [3]. This result
indicates that the mesh (a) in Fig. 2 should be used for
the combined Helmholtz integral equation and the mesh
(b) for the combined normal derivative integral
equation. Fig. 8 gives the comparison between the
present BEM, using meshes (a) and (b) in Fig. 2 for
equations (6) and (7) respectively, and the Wu and
Wan's solution for the scattered potentials on both sides
(exterior and interior) of the cylindrical surface. The
real and imaginary parts of the scattered velocity
potentials on the side wall as a function of z are showed
in Fig.s 8(a) and (b) respectively. Fig. 8(c) shows the

real parts of the scattered velocity potentials on the
bottom wall as a function of », and Fig. 8(d) shows the
corresponding imaginary parts. Again, a good
agreement is observed. These results indicate that the
treatment of the solid angle by the present method is
reasonable at the corner or vertex.

Finally, the present BEM is applied to a thin body
having general boundary conditions. The scattering of
an incident plane wave from a cylindrical shell open at
one end is shown in Fig. 9. The inside bottom surface is
assumed to be partly coated with an absorbing material.
The radius of the coated area is a/2 and the coefficient is
taken as a =k*37(1+i03)". The results from the
present method is compared with those obtained by the
multi-domain method [1].
potentials on the surface are depicted in Fig. 10. From
the data in Fig.s 10, it is shown that the results obtained
by the present BEM and the multi-domain BEM agree
well for the cases that have different boundary
conditions across the thin body.

The scattered velocity

6. Conclusion

A direct boundary element method (DBEM) is
reformulated to extend to thin bodies with rigid and
compliant surfaces by removing the normal velocity
continuation assumption. The combined Helmbholtz
integral equation and the combined normal derivative
integral equation are solved simultaneously to account
for the different boundary conditions on the surfaces
across the thin body. The different locations of the
collocation point in the two integral equations is critical
to take account of the reasonable. solid angle effect. The
knife edge effect is considered to confirm the knife-edge
condition by using a quarter-point element. No fictitious
surfaces are required in this formulation. Therefore, the
discretization is only restricted on the neutral surface of
the thin bodies. The present method can be easily
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applied to the problem of scattering and radiation from
thin bodies of arbitrary shape having either rigid and

compliant surfaces.
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where N(E) ={N,,N,,---,N,orN,} and @* is the column vectors of the velocity potential
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Fig. 3. Mesh for a disk problem.
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Fig. 2. Configuration of the master elements. (a) master o ~ o R

elements for equation (6); (b) master elements
for equation (7). (hollow circle : nodal points; Fig. 4. Normalized scattered velocity potential on the
flooded circle : collocation points) illuminated surface.
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Fig. 5. Normalized velocity potential of the vibrating

circular disk. Fig. 8. Scattered velocity potential on the wall surface.
(a) Real parts on the side wall; (b) Imaginary parts
on the side wall;(c) Real parts on the bottom wall;
(d) Imaginary parts on the bottom wall.
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Sound absorbing
material

Fig. 9. Circular cylindrical shell in which a sound
absorbing material is partly mounted.
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Fig. 10. Scattered velocity potential on the wall surface

Plotted quantity is the scatterd velocity potential on thn zkf=1'0_ anjl .the absorbing edmatel;lhal .w1th
the surface of the wall. (a) Real part on the side wall; a=k"3"(1+i03)" is partly covered on the inner
(b) Imaginary part on the side wall side of bottom surface. (r = (/x> + )

by using C ! element for both equations (6) and (7).
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