• Title/Summary/Keyword: surface polymer stabilization

Search Result 21, Processing Time 0.026 seconds

A Study on Nano-polishing of Injection Molds using Fixed Abrasive Pad (고정입자패드를 이용한 사출금형의 나노 폴리싱에 관한 연구)

  • Choe, Jae-Yeong;Kim, Ho-Yun;Park, Jae-Hong;Jeong, Hae-Do;Seo, Heon-Deok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.212-220
    • /
    • 2002
  • The finishing process for die and mold manufacturing is very important because it influences the final quality of products. Injection molds need higher quality surface than general purpose dies and molds. Conventional polishing can not make mold surface down to nanometer roughness efficiently because of their loading and glazing. This paper focused on the development of fixed abrasive pad using water swelling mechanism of polymer binder network. Self-conditioning was recognized as the long term polishing stabilization tool without any loading or glazing because water makes fixed abrasives free by swelling of the pad. Consequently, stable nano-polishing process has been applied on the injection mold, from the experimental results with polished surface roughness of Ra 15.1nm on STD-11 die steel.

Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors (슈퍼커패시터용 폐면 티셔츠로부터 질소 도핑된 다공성 탄소 직물의 제조 및 전기화학 특성 평가)

  • Chang, Hyeong-Seok;Hwang, Ahreum;Lee, Byoung-Min;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.502-510
    • /
    • 2021
  • Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as high-performance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogen-doped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.

PDMS Nanoslits without Roof Collapse

  • Lee, Jin-Yong;Yun, Young-Keu;Kim, Yoo-Ri;Jo, Kyu-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1793-1797
    • /
    • 2009
  • Soft lithography of polydimethyl-siloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrications of microfluidic devices for various biochemical and bioanalytical applications. However, fabrications of nanostructured PDMS components such as nanoslits remain extremely challenging because of deformation of PDMS material. One of the well-known issues is the unwanted contact between the surfaces of PDMS roof and bottom substrate, called ‘roof collapse’. Here we have developed a novel approach for the facile stabilization of PDMS nanoslits in the low height (130 nm)/width (100 $\mu$m) ratio without roof-collapse. Within 130 nm high nanoslits, we demonstrate the confinement of single DNA molecules. We believe that this approach will serve as a key to utilize PDMS as nanoslits for integrated microfluidic devices.

The Stabilization of Liquid Crystal Emulsions by Acrylamide Copolymers (Acrylamide Copolymers에 의한 Liquid Crystal Emulsions의 안정성에 관한 연구)

  • Ryu, Hai-Il;Jang, Nak-Han;Jeon, Youn-Seok;Lee, Myeong-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2005-2014
    • /
    • 2009
  • There are several methods to fabricate Polymer Dispersed Liquid Crystal(PDLC) films. One of them, so-called Nematic Curvilinear Aligned Phase(NCAP) film, is based on emulsion technology. To produce NCAP systems various water soluble polymers, such as partially hydrolyzed polyvinylalcohol(PVA) and polyvinyl pyrrolidone(PVP), which can form stable emulsion of liquid crystal(LC) without any stabilizers were used. In this work, we studied the dependence of emulsion stability on nature and composition of copolymers composed of water-soluble and water-insoluble moiety. We found that interfacial surface tension depends on the composition of comonomer, the copolymer concentration in the water, and the nature of hydrophobic chain. The Acrylamide -styrene(AA-ST) copolymer showed the lowest interfacial surface tension among the tested copolymers at the same concentration. Since the interfacial surface tension decreases with increasing the compatibility of copolymer with LC phase the AA-ST copolymer has the best compatibility with LC molecules. It is believed that molecules adsorbing easily on the surface of LC droplets allows the LC emulsion system to be more stable.

Surface Modification of Liposomes Using Comblike Copolymer for Enhancing Stability in Blood Circulation (혈류 내 안정성 향상을 위한 빗 모양 고분자로 개질된 리포솜)

  • Sin, Byeong-Cheol;Song, Chung-Gil;Hwang, Tae-Won;Seong, Ha-Su;Park, Eun-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • To increase the stability of liposomes in blood circulation, surface modification of liposomes by incorporating a lipid-polymer derivative in the lipid bilayer or conjugating a hydrophilic polymer to the liposomal surface has been developed. In this study, the comblike copolymer, poly(HEMA-co-HPOEM), having multiple polyethyleneoxide side chains was prepared by free radical polymerization of hydroxyethylmethacrylate (HEMA) and hydroxypolyoxyethylenemethacrylate (HPOEM) as vinyl monomers. Poly(HEMA-co-HPOEM) was conjugated to the liposomal surface and the characteristics of the modified liposomes in serum were investigated. Conjugation of poly(HEMA-co-HPOEM) to liposomes increased the particle size of the liposomes by 30 nm and decreased the absolute value of zeta potential of the liposomes by shielding the negative charge of liposomal surface. Loading efficiency of model drug, doxorubicin, in liposomes was about 90% and the efficiency was not affected by conjugation of poly(HEMA-co-HPOEM) to liposomes. The particle size of poly(HEMA-co-HPOEM)-conjugated liposomes in serum did not changed and the protein adsorption was lower than that of control liposomes or liposomes containing polyethyleneoxide-lipid derivative (PEG-liposomes). These results suggest that poly(HEMA-co-HPOEM) is efficient for the stabilization of liposomes in blood circulation.

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

Magnetism of Nanocomposite Quartz Powder by use of MCR Method

  • Soh, Deawha;Lim, Byoungjae;Soh, Hyunjun;Mofa, N.N.;Ketegenov, T.A.;Mansurov, Z.A.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.113-116
    • /
    • 2004
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was also confirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed. The magnetic permeability of the sample was decreasing within first two months down by 15~20 %. Then, the magnetic characteristics were almost stabilized steadily and continuously. The observed changes were related with defective structure of the particles, elastic stress relief, and changes of electron density and magnetic moment in deformation zones. This process of stabilization of the investigated properties could be intensified by the thermal annealing heat treatment in short time period of the nano-composite quartz powders at the temperature ranges of 100~15$0^{\circ}C$.

  • PDF

Preparation of Amino Acid Copolymers/water-insoluble Drug Nanoparticles: Polymer Properties and Processing Variables (아미노산 공중합체/난용성 약물 나노입자의 제조: 고분자 특성 및 가공변수)

  • Yoo Ji Youn;Lee Soo-Jeong;Ahn Cheol-Hee;Choi Ji-Yeun;Lee Jonghwi
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.440-444
    • /
    • 2005
  • An increase in the surface area of drugs by reducing particle sizes from microns to nanometers has been known as an efficient method to improve the bioavailability of water-insoluble drugs. To prevent drug nanoparticles from aggregation during the processes of drug formulation, a limited number of pharmaceutical inactive ingredients such as hydroxypropyl cellulose has been employed as stabilizers or dispersants. In this study, copolymers of hydrophilic and hydrophobic amino acids were synthesized by the ring opening polymerization of their N-carboxyanhydride monomers and evaluated as novel candidates to stabilize the nanoparticles of a water insoluble drug, naproxen. Naproxen nanoparticles stabilized by synthesized amino acid copolymers were successfully prepared in the size of $200\~500nm$ in 60 min by a wet comminution process. Particle size analysis showed that the effective stabilization performance of copolymers required the hydrophobic moiety content to be higher than $10 mol\%$. However, the molecular weight and morphology of copolymers was not the critical parameters in determining the particle size reduction. Their particle size was found to be stable up to 14 days without significant aggregation.

A Study on the Stabilization of the Papain Enzyme in the Moderately Concentrated Anionic Surfactant System (음이온 계면활성제에서 파파인 효소의 안정도에 관한 연구)

  • Kim, Ji-Yeong;Kim, Jin-Woo;Kim, Yong-Jin;Lee, Jae-Wook;Lee, Hae-Kwang;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • Even in the moderately concentrated anionic surfactant system, some special encapsulation method can shield the papain enzyme from proteolytic attacks. The stabilization of enzyme has been a major issue for successful therapies. In this study, we first stabilized an enzyme, papain in the microcapsules by using polyols, polyethyleneglycol (PEG), poly-propyleneglycol (PPG), and PEG-PPG-PEG block copolymer. In the analysis of EDS and CLSM, it was demonstrated that polyols are effectively located in the interface of papain and polymer. Polyols located in the interface had an ability to buffer the external triggers by hydrophobic partitioning, preventing consequently the catalytic activity of papain in the micro-capsules. Second. we introduced multi-layer capsulation methods containing ion complex. Such a moderately concentrated anionic surfactant system as wash-off cleansers, surfactants and waters can cause instability of entrapped enzymes. Surfactants and water in our final products swell the surface of enzyme capsules and penetrate into the core so easily that we can not achieve the effect of enzyme, papain. In this case, the ion complex multi-layer capsule composed of sodium lauroyl sarcosinate and polyquaternium-6 could effectively prevent water from penetration into the core enzyme, followed by in vivo test, and evaluate the stratum corneum (SC) turn-over speed.

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.