• 제목/요약/키워드: surface phase transition

검색결과 250건 처리시간 0.025초

In-situ monitoring of oxidation states of vanadium with ambient pressure XPS

  • Kim, Geonhwa;Yoon, Joonseok;Yang, Hyukjun;Lim, Hojoon;Lee, Hyungcheol;Jeong, Changkil;Yun, Hyungjoong;Jeong, Beomgyun;Ethan, Crumlin;Lee, Juhan;Ju, Honglyoul;Mun, Bongjin Simon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2015
  • The evolution of oxidation states of vanadium is monitored with ambient pressure X-ray photoemission spectroscopy. As the pressure of oxygen gas and surface temperature change, the formations of various oxidation states of vanadium are observed on the surface. Under 100mTorr of the oxygen gas pressure and 523K of sample temperature, VO2 and V2O5 are formed on the surface. The temperature-dependent resistance measurement on grown sample shows a clear metal-insulator transition near 350K. In addition, the measurement of Raman spectroscopy displays the structural change from monoclinic to rutile structures across the phase transition temperature.

  • PDF

침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성 (Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.193-200
    • /
    • 1988
  • 침전법에 의해서 pH가 7, 9, 10, 11인 조건에서 생성된 알루미늄 수산화물을 출발물질로 하여 열처리에 따른 알루미나 분말의 특성을 연구하였다. $600^{\circ}C$에서 2시간 동안 열처리하였을 때 비정질 알루미늄 수산화물의 결정수가 탈수된 후에 생성된 최초의 상은 비정질 알루미나의 비표면적은 감소하였다. 비정질 알루미늄 수산화물을 제외한 나머지 알루미늄 수산화물로부터 결정수의 탈수는 비표면적을 증가시켰으며 AlOOH 형태의 수산화물의 존재비가 클수록 전이 알루미나 존재영역까지는 비표면적이 더 크게 나타났다. $\alpha-Al_2O_3$로의 전이속도는 동일온도에서 pH=7 > pH=10 > pH=9 > pH=11의 순서로 일어났으며, 생성된 $\alpha-Al_2O_3$ 분말의 morphology는 알루미늄 수산화물의 외형을 남긴 형골입자(skeleton particle였다. 또한, 열처리 온도의 증가와 $\alpha-Al_2O_3$로의 전이가 일어남에 따라 비표면적의 감소와 더불어 입자성장이 일어나다.

  • PDF

GaN 증착용 사파이어 웨이퍼의 표면가공에 따른 압흔 특성 (Surface Lapping Process and Vickers Indentation of Sapphire Wafer for GaN Epitaxy)

  • 신귀수;황성원;김근주
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.632-638
    • /
    • 2005
  • The surface lapping process on sapphire wafer was carried out for the epitaxial process of thin film growth of GaN semiconducting material. The planarization of the wafers was investigated by the introduction of the dummy wafers. The diamond lapping process causes the surface deformation of dislocation and micro-cracks. The material deformation due to the mechanical stress was analyzed by the X-ray diffraction and the Vickers indentation. The fracture toughness was increased with the increased annealing temperature indicating the recrystallization at the surface of the sapphire wafer The sudden increase at the temperature of $1200^{\circ}C$ was correlated with the surface phase transition of sapphire from a $-A1_{2}O_{3}\;to\;{\beta}-A1_{2}O_{3}$.

균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가 (Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation)

  • 황두선;이남희;이희균;김선재
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF

자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석 (A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface)

  • 하응지;김우승
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

THERMOMECHANICAL STUDY OF LASER TREATED NiTi DENTAL ARCH WIRE

  • Kim, Young-Kon;Park, Joon-B.;Lakes, R.S.;Andreasen, G.F.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1989년도 춘계학술대회
    • /
    • pp.9-12
    • /
    • 1989
  • A preliminary study has been conducted to demonstrate the effect of laser heat treatment on Ni Ti alloy dental arch wires ($0.016"\;{\times}\;0.022"$ and $0.018"\;{\times}\;0.026"$, rectangular shape). Changes in mechanical and thermal properties and surface morphologies are investigated by using optical and scanning electron microscope (SEM), energy dispersive x-ray microprobe analysis(EDX), differential scanning calorimeter (DSC), and micro hardness tester. The results indicate that the laser can affect the thermal equilibrium state of the localized surface. Titanium rich surface film is formed by the laser treatment. The surface film and rapidly resolidified underlying structures show better chemical resistance than the matrix material. Phase transition temperatures which are related to shape recovery temperatures are changed after laser treatment. Hardness of resolidified area and heat affected zone are lower than before treatment.

  • PDF

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성 (Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels)

  • 김상규;김재윤;윤태희;황병철
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

$CoSi_2$ 전극 구조의 증착법에 따른 특성 변화 연구 (Study on Property Variations of $CoSi_2$ Electrode with Its Preparation Methods)

  • 남형진
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.5-9
    • /
    • 2007
  • Phase transition and dopant redistribution during silicidation of $CoSi_2$ thin films were characterized depending on their preparation methods. Our results indicated that cleanness of the substrate surface played an important role in the formation of the final phase. This effect was found to be reduced by addition of W resulting in the formation of $CoSi_2$. However, even in this case, the formation of the final phase was achieved at the cost of extra thermal energy, which induced rough interface between the substrate and the silicide film. As for the dopant redistribution, the deposition sequence of Co and Si on SiGe was observed to induce significant differences in the dopant profiles. It was found that co-deposition of Co and Si resulted in the least redistribution of dopants thus maintaining the original dopant profile.

  • PDF