Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.4.293

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation  

Hwang D. S (세종대학교 나노기술연구소/나노공학과)
Lee N. H (세종대학교 나노기술연구소/나노공학과)
Lee H. G (한국산업기술대학교 신소재공학과)
Kim S. J (세종대학교 나노기술연구소/나노공학과)
Publication Information
Korean Journal of Materials Research / v.14, no.4, 2004 , pp. 293-299 More about this Journal
Abstract
Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.
Keywords
$TiO_2$ powder; Positive ion radius; Phase transition; Metal-chlorides; Photocatalysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Tang, K. Prasad, R. Sanjunes, P. E. Schmid, and F. Levy, J. Appl. Phys., 75(4), 2042 (1994)   DOI   ScienceOn
2 A. P. Hong, D. W. Bahnemann and M. R. Hoffman, J. Phys. Chem., 91, 6245, (1987)   DOI
3 A. J. Hoffman, E. R. Carraway and M. R. Hoffman : Environ. Sci. Technol., 28, 776 (1994)   DOI   ScienceOn
4 M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987)   DOI
5 K. Fujihara, S. Izumi, T. Ohno and M. Matsumura, J. Photoc. Photobio A, 132, 99 (2000)   DOI   ScienceOn
6 N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 99, 16646 (1995)   DOI   ScienceOn
7 A. Amtout and R. Leonelli, Solid state Commun., 84, 349 (1992)   DOI   ScienceOn
8 H. Tang, H. Berger, P. E. Schmid, F. Levy and G. Burri, Solid State Commun., 87, 847 (1993)   DOI   ScienceOn
9 S. J. Kim, H. G. Lee, S. J. Kim, J. K. Lee and E. G. Lee, Applied Catalysis A: General, 242, 89 (2003)   DOI   ScienceOn
10 C. D. Wagner, W. M. Riggs, L. E Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, published in USA by Perkin-Elmer Co., Minnesota (1978)
11 X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge, J. Photoc. Photobio A, 141, 209 (2001)   DOI   ScienceOn
12 M. R. Hoffman, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995)   DOI   ScienceOn
13 S. D. Park, Y. H. Cho, W. W. Kim and S. J. Kim, J. Solid State Chem., 146(1), 230 (1999)   DOI   ScienceOn
14 W. Choi, A. Termin and M. R. Hoffman, J. Phys. Chem., 98, 13669 (1994)   DOI   ScienceOn
15 S. J. Kim, S. D. Park, Y. H. Jeong, and S. Park, J. Am. Ceram. Soc., 82(4), 927 (1999)   DOI   ScienceOn
16 K. R. Gopidas, M. Bohorquez and P. V. Kamat, J. Phys. Chem., 94, 6435 (1990)   DOI
17 K. Takeuchi, S. Murasawa and T. Ibusuki, Published in Japan by Kogyo chosa kai, Tokyo (1998)
18 H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, J. Synchrotron Rad., 6, 451 (1999)   DOI   ScienceOn
19 D. Bpokelmann, R. Goslich and D. Bahnemann, In Solar Thermal Energy Utilization, M. Becker, K.-H. Funken, G. Schneider, Eds.; Springer Verlag GmbH : Heidelberg, 6, 397 (1992)
20 J.-F. Reber, In Photoelectrochemistry, Photocatalysis and Photoreactors; Schiavello, M., Ed.; Reidel:Dordrecht, Holland, 321 (1985)
21 F. Y. Sun, M. Wu and W. G. Li, Chin. J. Catal., 19, 229 (1998)
22 L. Spanhel, H. Weller and A. Henglein, J. Am. Chem. Soc., 109, 6632 (1987)   DOI
23 J. E. Fredrick, H. E. Snell and E. K. Haywood, J. Photochem. Photobiol. A : Chem., 50, 443 (1989)   DOI