• Title/Summary/Keyword: surface mesh

Search Result 802, Processing Time 0.031 seconds

Efficiency enhancement of sheet metal forming analysis with a mesh regularization method (격자 정방형화 방법을 이용한 박판 성형해석의 효율개선)

  • Yoon, J.H.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.339-342
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

  • PDF

Shrink-Wrapped Boundary Face Algorithm for Mesh Reconstruction from Unorganized Points

  • Koo, Bon-Ki;Choi, Young-Kyu;Chu, Chang-Woo;Kim, Jae-Chul;Choi, Byoung-Tae
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.235-238
    • /
    • 2005
  • A new mesh reconstruction scheme for approximating a surface from a set of unorganized 3D points is proposed. The proposed method, called a shrink-wrapped boundary face (SWBF) algorithm, produces the final surface by iteratively shrinking the initial mesh generated from the definition of the boundary faces. SWBF surmounts the genus-0 spherical topology restriction of previous shrink-wrapping-based mesh generation techniques and can be applied to any type of surface topology. Furthermore, SWBF is significantly faster than a related algorithm of Jeong and others, as SWBF requires only a local nearest-point-search in the shrinking process. Our experiments show that SWBF is very robust and efficient for surface reconstruction from an unorganized point cloud.

  • PDF

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

NURBS Surface Reconstruction from an Unstructured Point Cloud (비조직화된 점군으로부터 NURBS 곡면 모델의 생성)

  • Li, Ri-Xie;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1564-1569
    • /
    • 2007
  • This study concerns an advanced NURBS surface reconstruction method, which is based on the NURBS surface model fitting to the unstructured point cloud measured from an arbitrary complex shape. The concept of generating a simple triangular mesh model was introduced to generate a quadrilateral mesh model well-representing the topological characteristics of point cloud. The NURBS surface reconstruction processes required the use of the various methodologies such as QEM algorithm, merging scheme of pair-wise triangular mesh, creation algorithm of $G^1$ continuous tensor product NURBS surface patch, and so on. The effectiveness and reliability of the proposed NURBS surface reconstruction method were validated through the simulation results for the geometrically and topologically complex shapes.

  • PDF

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF

Effect of Fluid Mesh Modeling on Surface Ship Shock Response under Underwater Explosion

  • Lee, Sang-Gab;Kwon, Jeong-Il;Chung, Jung-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.351-358
    • /
    • 2001
  • In this study, for the investigation of effects of several parameters, such as fluid mesh boundary size, cylinder or block shape, dimensions of depth, breadth and length at free suface, and fluid mesh element size to the depth direction on a reliable shock response of finite element model under underwater explosion with consideration of the bulk cavitation analysis of a simplified surface ship was carried out using the LS-DYNA3D/USA code. The shock responses were not much affected by the fluid mesh parameters. The computational time was greatly dependent on the number of DAA boundary segments. It is desirable to reduce the DAA boundary segments in the fluid mesh model, and it is not necessary to cover the fluid mesh boundary to or beyond the bulk cavitation zone just for the concerns about an initial shock wave response. It is also the better way to prefer cylinder type of the fluid mesh model to the block one.

  • PDF

The Fast 3D mesh generation method for a large scale of point data (대단위 점 데이터를 위한 빠른 삼차원 삼각망 생성방법)

  • Lee, Sang-Han;Park, Kang
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.705-711
    • /
    • 2000
  • This paper presents a fast 3D mesh generation method using a surface based method with a stitching algorithm. This method uses the surface based method since the volume based method that uses 3D Delaunay triangulation can hardly deal with a large scale of scanned points. To reduce the processing time, this method also uses a stitching algorithm: after dividing the whole point data into several sections and performing mesh generation on individual sections, the meshes from several sections are stitched into one mesh. Stitching method prevents the surface based method from increasing the processing time exponentially as the number of the points increases. This method works well with different types of scanned points: a scattered type points from a conventional 3D scanner and a cross-sectional type from CT or MRI.

  • PDF

Novel Process of Precision Nickel Mesh Fabrication for EMI Shielding Using Continuous Electroforming Technique (연속전주공정을 이용한 전자파 차폐용 정밀니켈메쉬 제조 신공정)

  • Lee Joo-Yul;Kim Man;Kwon Sik-Chol;Hue Nguyen Viet;Kim In-gon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.212-215
    • /
    • 2005
  • Novel continuous electroforming process equipped with a rotating patterned mandrel, soluble/insoluble anode and multiple stage of rolling wheels was proposed to produce precision nickel mesh, which is known as a very efficient electromagnetic interference (EMI) shielding material. Continuously electroformed nickel deposits showed a tendency to form small-sized particles as the plating solution temperature increased and mandrel rotation speeded up and the applied current density decreased. Along the honeycomb patterns of mandrel, nickel was accurately electrodeposited on the surface of rotating mandrel, but quite different visual/structural characteristics were measured on both sides.

A Shape-preserved Method to Improve the Developability of Mesh

  • Su, Zhixun;Liu, Xiuping;Zhou, Xiaojie;Shen, Aihong
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.219-224
    • /
    • 2005
  • Developable surface plays an important role in computer aided design and manufacturing systems. This paper is concerned with improving the develop ability of mesh. Since subdivision is an efficient way to design complicated surface, we intend to improve the developability of the mesh obtained from Loop subdivision. The problem is formulated as a constrained optimization problem. The optimization is performed on the coordinates of the points of the mesh, together with the constraints of minimizing shape difference and maximizing developability, a developability improved mesh is obtained.

  • PDF