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Abstract

Developable surface plays an important role in computer aided design and manufacturing systems. This
paper is concerned with improving the developability of mesh. Since subdivision is an efficient way to
design complicated surface, we intend to improve the developability of the mesh obtained from Loop
subdivision. The problem is formulated as a constrained optimization problem. The optimization is
performed on the coordinates of the points of the mesh, together with the constraints of minimizing
shape difference and maximizing developability, a developability improved mesh is obtained.
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1 Introduction

Developability is one of the most important intrinsic properties of surface, which is applied widely
in practice. For instance, the modeling of ship needs bending some plane material, while the
material can not afford tensioning and bending infinitely, so the surface of the ship should be
developable or approximatively developable. Another example is the design and manufacture of
clothes and shoes. Thereby the study on developability of surface is necessary.

In the last few decades, much work has been down on the developability of two classes of
surface: parameter surfaces and meshes. J. Lang ([1]) considered the rational Bezier surface and
derive the condition formulation for rational Bezier surface. While the complexity of solving
the condition formulation make it difficult to be applied to design developable Bezier surface
in CAGD. T. Maekawa ([2]) proposed a kind of technique for designing developable B-spline
surface of interpolating boundary curves. Other researches include methods based on projective
geometry ([3]), optimization ([4]), and affine transformation ([5]). The properties of developable
Bezier surface and the degree of freedom of developable surface design were also studied ([6).

Due to the superiority in designing complex surface, triangle meshes as well as the developability
of them have received much attention recently. L. P. Kobbelt ([8]) discussed the geometrical
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properties of meshes. C. L. Charlie ([7]) presented a developability-preserved FFD-based method.
Other researchers focused on how to flatten a mesh into plane, energy-based ([10, 9]) and FEM-
based methods ([11, 12]) were proposed to solve this problem.

The above mentioned mesh-based methods mainly discuss the approach to develop a mesh or to
deform it with developability preserved, and seldom prior research on improving the developability
of a mesh has been found in literature. Since subdivision is an important method for modeling
complex objects, to improve the developability of subdivision surface becomes a valuable topic.
This paper discuss how to improve the developability of subdivision surface. It is formulated as
a constrained optimization problem, which can preserving the shape of the mesh simultaneously.

2 Mathematical Formulation

2.1 Developability of mesh

A surface is developable if it can be flattened into a plane without any distortion. At any regular
point, the Gaussian curvature of a developable surface is identically zero. For a triangle mesh,
the Gaussian curvature is zero expect on the vertices. So a developability of a triangle mesh
is concerned with the vertices. The approximation Gaussian curvature function on a internal
triangular node ¢; is ([8])

Fo = (2= 32 00/(5 30 A)

where 65 are the inner angles adjacent to g;, and Ay are the corresponding triangle areas. The
Gaussian curvature on a boundary vertex is zero. A internal vertex is called developable point
when > j 6; = 2w, otherwise, non-developable point. If all the internal vertices of a mesh M are
developable points, the mesh is developable, otherwise, non-developable. So the developability
of a mesh can be detected by the sum of the inner angular at every internal vertex [7]. While,
simply stating whether a mesh is developability or not is insufficient to quantify the degree of
developability of it. So we introduce the developability function of a mesh.

Definition [7] The developability function of a triangle mesh is defined as
1
DIM] = = > 6(27 = Guum (@) As,

where d(t) is the impulse function, A, = $>° ;A;j is the sum area of the adjacent triangle of a
vertex ¢; on M with A; being the area of the jth adjacent triangle corresponding to g;, A is the
area of the mesh M. 0,,,,(g;) is either the sum of inner angles adjacent to ¢; when g, is an internal
vertex, or set to 2 when ¢; is on the boundary of M.

D[M] describe the degree of the developability of a mesh. When D[M] = 1, the mesh is
developable. When D[M] = 0, all the internal vertices are non-developable points, which means
the mesh has the lowest degree of developability.
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2.2 Developability improving algorithm

For a given initial triangle mesh M, a subdivision surface M’ can be obtained by Loop scheme.
Suppose M’ consists of n vertices, the coordinates of the n vertices form a n matrix
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We intend to find a developable mesh M* that means D{M*] = 1, and minimizing the difference
between M and M™*. The difference between M and M* can be formulated as the following elastic
energy function

BX") =D (s (X e X7 - 12

where 7 is the index of a triangular edge, ¢;s € M’ and ¢;; € M’ are the vertices of the edge, and
19 is the length of the triangular edge i on M’. X* is the n matrix of the coordinates of the n
vertices on M*
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Therefore, we formulate the problem as a constrained optimization problem
min E(X*) s.t. D[M*|=1. (1)

There is an impulse function in the definition of the developability function, which may lead to
irregularity during the optimization. A new developability detect function G is defined to take
place the developability function D

GIX] =D _(9(a:(X)))?

where ¢;(X) is the position of a triangular vertex ¢; € M determined by the parameter configu-
ration X, and the function g(g;) is a vertex developability detect function

( ) _ 07 g; € B
9\G%:) = 2m — 3, 0k, otherwise

where B is the set of triangle vertices on the boundary of the given mesh M’.

We note that when G[X*] = 0, D[]M*| = 1. Therefor, the constrained optimization problem
Eq. (1) can be rewritten as
min E(X*) s.t. GX*]=0. (2)

3 Numerical Scheme

3.1 Conjugate gradient

The constrained optimization Eq. (2) can be converted into a unconstrained optimization problem

B(X*) = B(X") + £ (@(x")? (3)
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where £(G(X*))? is the penalty term. The choice of the p is not trivial, in our algorithm,

1 032
p= E«e(G[X(k)DQ ;(lz)

where m, is the number of triangular edges for the kth iteration.

We apply the Conjugate gradient to solve Eq. 2, the algorithm is

X+ — X&) _ o plB)
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3.2 Computation of the gradient

In the above algorithm, an important process is the computation of the gradient of the objective
function. We will give the gradients of £ and G respectively. Since E is concerned with the
vertices g, as E(gy) = Y. (|gu:| — Lus)?, where g; are the adjacent vertices of g,. Thereby gradient
of E with respect to ¢, is

OF _ Blg,+h)— Bl —h)
dqy 2h '
And similarly, the gradient of G with respect to g, is

G _ (9(qu + h))* — (9(g0 — 1))?
Oq, 2h

where h is the time step.

(a) Initial control mesh

(b) Loop subdivision surface  (c) Mesh after optimization

Fig. 1: The optimization of the shoe mesh

4 Experimental Result

In this section we give some examples of the present method (Fig. 1, 2), and table 1 lists the
statistics of them. In table 1, D[My], D[ML] and D[Mg] denote the developability of the initial
control mesh, the mesh after Loop subdivision, and the mesh after optimization. 45 denotes
the relative difference between the Loop subdivision surface and the mesh after optimization
ol =101/ 35,12, where 12 and [; are the lengths of the edge on the Loop subdivision surface and
the corresponding edge on the mesh after optimization. 6D denotes the relative improvement of
the developability between the Loop subdivision surface and the mesh after optimization.
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(a) Initial control mesh
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(b) Loop subdivision surface

Fig. 2: The optimization of the face

Table 1: The statistics of the computation
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(c) Mesh after optimization

Example | G[M)] G[M1] | G[Mpg] 4S 0D
Fig. 1 | 0.459899 | 0.687809 | 0.693811 | 0.1407% | 0.8726%
Fig. 2 | 0.153149 | 0.307269 | 0.309201 | 1.0631% | 0.6288%

5 Conclusion

In this paper, a shape-preserved developability improvement method for mesh is presented based
on optimization. Numerical experiments illustrate its feasibility.

We find that for a fine mesh, the developability will be improved through Loop subdivision,
while this does not necessary hold for a relative coarse mesh. Therefor, the relationship between
subdivision and the developability of a mesh should be studied in the future.
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