• Title/Summary/Keyword: surface film

Search Result 6,712, Processing Time 0.035 seconds

Effect of Solution Temperature for Al Alloy Anodizing on Cavitation Characteristics (캐비테이션 특성에 미치는 알루미늄 합금의 양극 산화 용액 온도의 영향)

  • Lee, Seung-Jun;Lee, Jung-Hyung;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.140-146
    • /
    • 2015
  • The commercialization of aluminum had been delayed than other metals because of its high oxygen affinity. Anodizing is a process in which oxide film is formed on the surface of a valve metal in an electrolyte solution by anodic oxidation reaction. Aluminum has thin oxide film on surface but the oxide film is inhomogeneous having a thickness only in the range of several nanometers. Anodizing process increases the thickness of the oxide film significantly. In this study, porous type oxide film was produced on the surface of aluminum in sulfuric acid as a function of electrolyte temperature, and the optimum condition were determined for anodizing film to exhibit excellent cavitation resistance in seawater environment. The result revealed that the oxide film formed at $10^{\circ}C$ represented the highest cavitation resistance, while the oxide film formed at $15^{\circ}C$ showed the lowest resistance to cavitation in spite of its high hardness.

Electrical and interface characteristics of BST thin films grown by RF magnetron reactive sputtering (RF magnetron reactive sputtering 법으로 제작한 BST 박막의 전기적 및 계면 특성에 관한 연구)

  • 강성준;장동훈;유영섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.33-39
    • /
    • 1998
  • The BST (Ba$_{1-x}$ Sr$_{x}$TiO$_{3}$)(50/50) thin film has been grown by RF magnetron reactive sputtering and its characteristics such as crystallization, surface roughness, and electrical properties have been investigated with varying the film thickness. The crystallization and surface roughness of BST thin film are investigated by using XRD and AFM, respectively The BST thin film anealed at 800.deg. C for 2 min has pure perovskite structure and good surface roughness of 16.1.angs.. We estimate that the thickness and dielectric constant of interface layer between BST film and electrode are 3nm and 18.9, respectively, by measuring the capacitance with various film thickness. As the film thickness increases form 80nm to 240nm, the dielectric constant at 10kHz increases from 199 to 265 and the leakage current density at 200kV/cm decreases from 0.682.mu.A/cm$^{2}$ to 0.181 .mu.A/cm$^{2}$. In the case of 240nm-thick BST thin film, the charge storage density and leakage current density at 5V are 50.5fC/.mu.m$^{2}$ and 0.182.mu.A/cm$^{2}$, respectively. The values indicate that the BST thin film is a very useful dielectric material for the DRAM capacitor.or.

  • PDF

Pretreatment for Cu electroplating and Etching Property of Cu-Cr Film (Cu-Cr합금 박막의 구리 전기도금을 위한 전처리 및 에칭 특성에 관한 연구)

  • Kim, N. S.;Kang, T.;Yun, I. P.;Park, Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.3
    • /
    • pp.149-157
    • /
    • 1993
  • In the study of TAB(Tape Automated Bonding)technologies, Cu-Cr sputtered seed layer has been used to improve the adhesion between Polyimide and Cu film and electrical properties. But the Cu electrodeposit on Cu-Cr film had poor adhesion or powder-like form due to the surface Cr oxides on the Cu-Cr film. By means of activating the Cu-Cr film with the oxalic acid and phosphoric acid, the Cu film with the improved adhesion could be coated on the Cu-Cr sputtered film in CuSO4 solution. The etching rate was compared with increasing the Cr content of the sputtered Cu-Cr film, and anodic polarization curve in FeCl3 solution was investigated. With increasing the Cr content, the etching rate was reduced. The clean etching cross section could be obtained with increasing the concentration of FeCl3 solution. But above the 13 w/o Cr content, Cu-Cr sputtered film could not bed etched cleanly only with FeCl3 solution and additives were needed.

  • PDF

Hydrophobic Properties on RF-sputtered PTFE Films coated on UV-treated Glass Substrates (UV 처리된 유리기판위에 RF-스퍼터된 PTFE 박막들의 발수 특성)

  • Son, Jin-Woon;Youn, Hyon-O;Bae, Kang;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.6-9
    • /
    • 2010
  • Surface properties of polytetrafluoroethylene(PTFE) films fabricated by rf-magnetron sputtering system with UV surface treatment were investigated to increase water contact angle for their hydrophobic property. We found that the surface morphology and water contact angles of PTFE film modified as a function of the UV treatment times using UV-irradiation were influenced. The water contact angle of PTFE film with optimized UV treatment time for 15 minute showed a high hydrophobicity compared with the film without any surface treatment. We thought that it was due to the energy change of PTFE surface with an adhesion improvement to the glass surface as a smoothing a rough surface with needle-shape and/or the enhancement of an interface property as a removing some defects on the surface like a cleaning effect.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

A Study on the Way to Increase Heat Resistance of Teflon Type Thin Film Electret Applied for Industrial Sensor (산업용 센서에 사용하는 Teflon계 박막 일렉트렛의 내열성 향상에 관한 연구)

  • 김병수;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.60-63
    • /
    • 2003
  • For the increase the charge stability of teflon electrets for used at uncomfortable industrial circumstances with high temperature or humidity, We made an investigation into double layer effect of teflon electrets. Teflon AF film was spincoated on FEP film and then the charge storage property of AF/FEP dual film was investigated to be compared with FEP film. It was found that the AF/FEP dual film has higher surface potential than FEP film on the repeated charging and annealing process. It seems that AF/FEP dual film has higher thermal stability than FEP film through TSC measurement. If the investigations of the double layer effect of Teflon film carried out more closely with it's molecular structures and surface conditions, it may be effectively improved the stability of charge storage.

A study on releasing high aspect ratio micro features formed with a UV curable resin (UV경화수지의 고형상비 미세패턴 이형에 관한 연구)

  • Kwon, Ki-Hwan;Yoo, Yeong-Eun;Kim, Chang-Wan;Park, Young-Woo;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1833-1836
    • /
    • 2008
  • Recently as the micro surface features become higher and diverse in their shapes, the releasing of the molded features becomes more crucial for manufacturing of the micro patterned products. The higher aspect ratio of the features or more complex shape of the features results in larger releasing force, elongation or cohesive failure of the features during the releasing. Another issue would be the uniformity of the released surface features after molding, especially for applications with large area surface. The micro patterned optical film, one of typical applications for micro surface features, consists of two layers, the thermoplastic base film and the micro formed UV resin layer. Therefore two interfaces are typically involved during the forming of this micro featured film; one is between the base film and the UV resin and another is between the resin and the pattern master. To improve the releasing of the molded surface features, the adhesive characteristic was investigated at these two interfaces. A PET film was used as a base film and two UV curable resins with different surface energy were prepared for different adhesiveness. Also the two different pattern masters were employed; one is made from brass-copper alloy and fabricated with PMMA. The adhesiveness at each interface was measured for some combinations of these base film, UV resins and the masters and the effect of this adhesiveness on the releasing was investigated.

  • PDF

Introduction of Chromophores on the Activated Surface of Poly(2-trialkylstannylthioethyl acrylate) Films (Poly(2-trialkylstannylthioethyl acrylate) 필름의 표면 활성화를 통한 발색단 도입)

  • Yun, Jong Chul;Do, Jung Yun
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.795-802
    • /
    • 2012
  • Surface modification of a hydrophobic acrylic polymer film has been performed through simple chemical treatment to give a reactive surface. 2-Triphenylstannylthioethyl acrylate was polymerized under UV-illumination with various contents of a comonomer. When the polymer film was treated with fluoride ion, thiol functional group (SH) was generated on the film surface, which was observed through infrared absorption spectroscopy. The surface was functionalized by thiol addition reaction to acrylic chromophores. The SH content on the surface was controlled with a comonomer, tris(hydroxymethyl)ethane triacrylate, and examined with UV-Vis absorbance of the chromophore attached film. Similarly, a polymer film from 2-tributylstannylthioethyl acrylate was prepared. Destannylation from the triphenylstannyl and tributylstannyl surface completed after 30 and 5 min, respectively. The SH-exposed surface was modified with an isocyanate attached chromophore within 10 min, while acrylic chromophore required 24 h.

EFFECTS OF SURFACE COATING ON THE SCREW RELEASE OF DENTAL IMPLANT SCREW (치과용 임플란트 나사의 풀림에 미치는 표면코팅 효과)

  • Koo Cheol-In;Chung Chae-Heon;Choe Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.210-225
    • /
    • 2004
  • Statement of problem: Implant screw loosening has been remained problem in restorative practices. Surface treatment of screw plays a role of preventing screw from loosening in implant screw mechanism. Purpose : The purpose of this study was to investigate surface characteristics of TiN and ZrN film ion plated screw with titanium and gold alloy screw and to evaluate wear resistance, surface roughness, and film adhesion on screw surface using various instruments. Material and methods : GoldTite screws and titanium screws provided by 3i (Implant Innovation, USA) and TorqTite screws or titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, korea) were selected. Ion plating which is much superior to other surface modification techniques was carried out for gold screws and titanium screws using Ti and Zr coating materials with nitrogen gas. Ion nitrided surface of each abutment screw was observed with field emission scanning electron microscopy (FE-SEM, micro-diamond scratch tester, vickers hardness tester, and surface roughness tester. Results : 1) The surface of gold screw and GoldTite is more smooth than ones of other kinds of non coated screw. 2) The ZrN and TiN coated surface is the more smooth than ones of other kinds of screw. 3) The hardness of TiN and ZrN coated surface showed higher than that of non coated surface. 4) The TiN coated titanium screw and ZrN coated gold screw have a good wear resistance and adhesion on the surface. 5) The surface of ZrN coated screw showed low surface roughness compared with the surface of TiN coated screw. Conclusion : It is considered that the TiN and ZrN coated screw which would prevent a screw from loosening can be applicable to implant system and confirmed that TiN and ZrN film act as lubricant on surface of screw due to decrease of friction for recycled tightening and loosening.

Effects of Hydrogen Plasma Treatment of the Underlying TaSiN Film Surface on the Copper Nucleation in Copper MOCVD

  • Park, Hyun-Ah;Lim, Jong-Min;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.435-438
    • /
    • 2004
  • MOCVD is one of the major deposition techniques for Cu thin films and Ta-Si-N is one of promising barrier metal candidates for Cu with high thermal stability. Effects of hydrogen plasma pretreatment of the underlying Ta-Si-N film surface on the Cu nucleation in Cu MOCVD were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy and Auger electron emission spectrometry analyses. Cu nucleation in MOCVD is enhanced as the rf-power and the plasma exposure time are increased in the hydrogen plasma pretreatment. The optimal plasma treatment process condition is the rf-power of 40 Wand the plasma exposure time of 2 min. The hydrogen gas flow rate in the hydrogen plasma pretreatment process does not affect Cu nucleation much. The mechanism through which Cu nucleation is enhanced by the hydrogen plasma pretreatment of the Ta-Si-N film surface is that the nitrogen and oxygen atoms at the Ta-Si-N film surface are effectively removed by the plasma treatment. Consequently the chemical composition was changed from Ta-Si-N(O) into Ta-Si at the Ta-Si-N film surface, which is favorable for Cu nucleation.