Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.3.140

Effect of Solution Temperature for Al Alloy Anodizing on Cavitation Characteristics  

Lee, Seung-Jun (Department of Power System Engineering, Kunsan National University)
Lee, Jung-Hyung (Division of Marine Engineering, Mokpo National Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
Publication Information
Corrosion Science and Technology / v.14, no.3, 2015 , pp. 140-146 More about this Journal
Abstract
The commercialization of aluminum had been delayed than other metals because of its high oxygen affinity. Anodizing is a process in which oxide film is formed on the surface of a valve metal in an electrolyte solution by anodic oxidation reaction. Aluminum has thin oxide film on surface but the oxide film is inhomogeneous having a thickness only in the range of several nanometers. Anodizing process increases the thickness of the oxide film significantly. In this study, porous type oxide film was produced on the surface of aluminum in sulfuric acid as a function of electrolyte temperature, and the optimum condition were determined for anodizing film to exhibit excellent cavitation resistance in seawater environment. The result revealed that the oxide film formed at $10^{\circ}C$ represented the highest cavitation resistance, while the oxide film formed at $15^{\circ}C$ showed the lowest resistance to cavitation in spite of its high hardness.
Keywords
aluminum; anodizing; oxide film; cavitation; seawater;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Han, Bull. Korean Inst. Met. Mater., 2, 102 (1989).
2 J. E. Lewis and R. C. Plumb, J. Electrochem. Soc., 105, 498 (1958).   DOI
3 F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, 411 (1953).   DOI
4 H. Masuda and K. Fukuda, Science, 268, 1466 (1995).   DOI   ScienceOn
5 H. Birey, J. Appl. Phys., 49, 2898 (1978).   DOI   ScienceOn
6 S. Ikonopisov, Electrochim. Acta, 22, 1077 (1977).   DOI   ScienceOn
7 N. Klein, V. Moskovici and V. Kadary, J. Electrochem. Soc., 127, 152 (1980).   DOI
8 F. Debuyck, M. Moors and A. P. Van Peteghem, Mater. Chem. Phys., 36, 146 (1993).   DOI   ScienceOn
9 S. Ono and N. Masuko, Surf. Coat. Technol., 169-170, 139 (2003).   DOI   ScienceOn
10 A. L. Yerokin, A. Shatrov, V. Samsonov, P. Shahkov, A. pilkington, A. Leyland, and A. Matthews, Surf. Coat. Technol., 199, 150 (2005).   DOI   ScienceOn
11 H. Tiltscher, H. Wolf, W. Jager and K. Dialer, Chem. Ing. Tech., 53, 363 (1981).   DOI
12 E. K. Joo. Ph. D Thesis, p. 39, Kookmin University (2002).
13 D. J. Stirland and R. W. Bicknell, J. Electrochem. Soc., 106, 481 (1959).   DOI
14 S. J. Kim and K. Y. Hyun, Corros. Sci. Tech., 11, 151 (2012).   DOI
15 W. C. Leith and A. L. Thomson, J. Basic Eng., 82, 795 (1960).   DOI
16 I. Hansson and K. A. Morch, J. Appl. Phys., 51, 4651 (1980).   DOI   ScienceOn
17 D. S. Won, K. S. Jeon, Y. T. Kho and J. H. Lee, J. Corros. Sci. Soc. of. Kor., 23, (1994).
18 J. G. Auret, O. F. R. A. Domm, G. J. Wright and F. P. A. Robinson, Corrosion, 49, 910 (1993).   DOI   ScienceOn
19 P. Csokan, Adv. Corros. Sci. Tech., 7, 239 (1980).
20 S. M. Ahmed, K. Hokkirigawa, Y. Ito and R. Oba, Wear, 142, 303, (1991).   DOI   ScienceOn
21 M. K. Lee, S. M. Hong, G. H. Kim and C. K. Rhee, Korean J. Met. Mater., 44, 350 (2006).
22 T. Okada, Y. Iwai, S. Hattori and N. Tanimura, Wear, 184, 231 (1995).   DOI   ScienceOn
23 H. G. Feller and Y. Kharrazi, Wear, 93, 249 (1984).   DOI   ScienceOn