• Title/Summary/Keyword: surface damage

Search Result 2,308, Processing Time 0.034 seconds

RIE induced damage recovery on trench surface (트렌치 표면에서의 RIE 식각 손상 회복)

  • 이주욱;김상기;배윤규;구진근
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.120-126
    • /
    • 2004
  • A damage-reduced trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy, which was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $O_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching. To reduce the RIE induced damage and obtain the fine shape trench corner rounding, we investigated the hydrogen annealing effect after trench formation. Silicon atomic migration on trench surfaces using high temperature hydrogen annealing was observed with atomic scale view. Migrated atoms on crystal surfaces formed specific crystal planes such as (111), (113) low index planes, instead of fully rounded comers to reduce the overall surface energy. We could observe the buildup of migrated atoms against the oxide mask, which originated from the surface migration of silicon atoms. Using this hydrogen annealing, more uniform thermal oxide could be grown on trench surfaces, suitable for the improvement of oxide breakdown.

Evaluation of Concrete Freeze and Thaw Resistance by Measuring Surface Rebound Value and Relative Dynamic Modulus of Elasticity (반발경도와 상대동탄성계수 측정에 의한 콘크리트 동결융해 성능평가 비교연구)

  • Park, Ji-Sun;Ahan, Ki-Hong;You, Young-Jun;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.419-424
    • /
    • 2021
  • This study investigated the possibility of early determination of frost damage on the concrete surface by using the rebound hardness method, widely used for estimation the compressive strength of concrete on the site. For this purpose, the surface damage of concrete was compared by measuring the rebound hardness and the relative dynamic modulus of the concrete for the multi-sided and single sided concrete surface exposed to freeze and thaw condition. Compared to the resonance vibration method, the rebound hardness method was able to show the frost damage 150 cycles quicker for the single-sided exposed concrete specimen and 50 cycles quicker for the multi-sided exposed concrete specimen. Therefore, it is considered that the rebound hardness method can determine the concrete surface damage more quickly than that of the resonance vibration method.

A Selection Method of Backbone Network through Multi-Classification Deep Neural Network Evaluation of Road Surface Damage Images (도로 노면 파손 영상의 다중 분류 심층 신경망 평가를 통한 Backbone Network 선정 기법)

  • Shim, Seungbo;Song, Young Eun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.106-118
    • /
    • 2019
  • In recent years, research and development on image object recognition using artificial intelligence have been actively carried out, and it is expected to be used for road maintenance. Among them, artificial intelligence models for object detection of road surface are continuously introduced. In order to develop such object recognition algorithms, a backbone network that extracts feature maps is essential. In this paper, we will discuss how to select the appropriate neural network. To accomplish it, we compared with 4 different deep neural networks using 6,000 road surface damage images. Based on three evaluation methods for analyzing characteristics of neural networks, we propose a method to determine optimal neural networks. In addition, we improved the performance through optimal tuning of hyper-parameters, and finally developed a light backbone network that can achieve 85.9% accuracy of road surface damage classification.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

Effect of Improved Surface Wetability and Adhesion of Undulated Diamond-like Carbon Structure with r.f. PE-CVD

  • Jang, Young-Jun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.22-25
    • /
    • 2008
  • This paper investigated the wetting and adhesion property of undulated DLC film with surface morphology controlled for a reduced real area of contact. The undulated DLC Films were prepared by 13.56 MHZ radio frequency plasma enhanced chemical vapor deposition (r.f. PECVD) by using nanoscale Cu dots surface on a Si (100) substrate. FE-SEM, AFM analysis showed that the after repeated deposition and plasma induced damage with Ar ions, the surface was nanoscale undulated. This phenomenon changed the surface morphology of DLC surface. Raman spectra of film with changed morphology revealed that the plasma induced damage with Ar ions significantly suppressed the graphitization of DLC structure. Also, it was observed that while the untreated flat DLC surfaces had wetting angle starting ranged from $72^{\circ}$ and adhesion force of 333ni. Had wetting angle the undulated DLC surfaces, which resemble the surface morphology of a cylindrical shape, increased up to $104^{\circ}$ and adhesion force decreased down to 11 nN. The measurements agree with Hertz and JKR models. The surface undulation was affected mainly by several factors: the surface morphology affinity to cylindrical shape, reduction of the real area of contact and air pockets trapped in cylindrical asperities of the surface.

The Study on the Strong Wind Damage Prediction for Estimation Surface Wind Speed of Typhoon Season(I) (태풍시기의 강풍피해 예측을 위한 지상풍 산정에 관한 연구(I))

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.195-201
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10 m level wind speed using 700 hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700 hPa wind, 30 km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10 m level, landuse data of USGS are employed. For 10 m level wind speed of Typhoon Rusa in 2002, we sampled AWS site of $7.4{\sim}30km$ distant from typhoon center and compare them with observational data. The results show that the 10 m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10 m level wind speed is useful for estimating the damage structure from typhoon.

Effect of cavitation on surface damage of 16.7Cr-10Ni-2Mo stainless steel in marine environment (해양 환경 하에서 16.7Cr-10Ni-2Mo 스테인리스강의 표면 손상에 미치는 캐비테이션의 영향)

  • Chong, Sang-Ok;Han, Min-Su;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Stainless steel is generally known to have characteristics of excellent corrosion resistance and durability, but in a marine environment it can suffer from localized corrosion due to the breakdown of passivity film due to chloride ion in seawater. Furthermore, the damage behaviors are sped up under a cavitation environment because of complex damage from electrochemical corrosion and cavitation-erosion. In this study the characteristics of electrochemical corrosion and cavitation erosion behavior were evaluated on 16.7Cr-10Ni-2Mo stainless steel under a cavitation environment in natural seawater. The electrochemical experiments have been conducted at both static conditions and dynamic conditions inducing cavitation with different current density parameters. The surface morphology and damage behaviors were compared after the experiment. After the cavitation test with time variables morphological examinations on damaged specimens were analyzed by using a scanning electron microscope and a 3D microscope. the galvanostatic experiment gave a cleaner surface morphology presented with less damage depth at high current density regions. It is due to the effect of water cavitation peening under the cavitation condition. In the cavitation experiment, with amplitude of $30{\mu}m$ and seawater temperature of $25^{\circ}C$, weight loss and cavitation-erosion damage depth were dramatically increased after 5 hours inducing cavitation.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

A Study on Rolling Contact Fatigue of Rail by Damage Mechanics (손상역학에 의한 레일의 구름접촉피로 연구)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

Silicon Solar Cell Efficiency Improvement with surface Damage Removal Etching and Anti-reflection Coating Process (표면결함식각 및 반사방지막 열처리에 따른 태양전지의 효율 개선)

  • Cho, Chan Seob;Oh, Jeong Hwa;Lee, Byeungleul;Kim, Bong Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.29-35
    • /
    • 2014
  • In this study general solar cell production process was complemented, with research on improvement of solar cell efficiency through surface structure and thermal annealing process. Firstly, to form the pyramid structure, the saw damage removal (SDR) processed surface was undergone texturing process with reactive ion etching (RIE). Then, for the formation of smooth pyramid structure to facilitate uniform doping and electrode formation, the surface was etched with HND(HF : HNO3 : D.I. water=5 : 100 : 100) solution. Notably, due to uniform doping the leakage current decreased greatly. Also, for the enhancement and maintenance of minority carrier lifetime, antireflection coating thermal annealing was done. To maintain this increased lifetime, front electrode was formed through Au plating process without high temperature firing process. Through these changes in two processes, the leakage current effect could be decreased and furthermore, the conversion efficiency could be increased. Therefore, compared to the general solar cell with a conversion efficiency of 15.89%, production of high efficiency solar cell with a conversion efficiency of 17.24% was made possible.