• Title/Summary/Keyword: surface approximation

Search Result 510, Processing Time 0.034 seconds

A Study on Simple Adaptive Control of Flexible-Joint Robots Considering Motor Dynamics (모터 동역학식을 고려한 유연 연결 로봇의 간단한 적응 제어에 관한 연구)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1103-1109
    • /
    • 2008
  • Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear sγstem, it is difficult and complex to design the controller for electrically driven flexible-joint (EDFJ) robots. In this paper, we propose a simple adaptive control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are provided to validate the effectiveness of the proposed control system.

A High Quality Mesh Generation with Automatic Differentiation for Surfaces Defined by Hamiltonian Lie Algebra

  • Sagara, Naoya;Makino, Mitsunori
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1141-1144
    • /
    • 2002
  • The research on computer graphics(CG) has been actively studied and developed. Namely, many surface/solid models have been proposed in the field of computer aided geometric design as well as the one of CG. Since it is difficult to visualize the complex shape exactly, an approximation by generating a set of meshes is usually used. Therefore it is important to guarantee the quality of the approximation in consideration of the computational cost. In this paper, a mesh generation algorithm will be proposed for a surface defined by Lie algebra. The proposed algorithm considers the quality in the meaning of validation of invariants obtained by the mesh, using automatic differentiation.

  • PDF

Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile (듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계)

  • Byon, Sung-Kwang;Lee, Dong-Hyeong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

Parametric Analysis of Slamming Forces: Compressible and Incompressible Phases

  • Campana, E.F.;Carcaterra, A.;Ciappi, E.;Iafrati, A.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2000
  • The slamming force occurring in the free fall impact of cylindrical bodies on the water surface is analyzed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried on by the acoustic approximation, obtaining a closed form expression for the maximum impact force. The incompressible analysis is approached through and unsteady boundary element method to compute the free surface evolution and the slamming force on the body. A similar behavior seems to characterize the maximum slamming force versus a dimensionless mass parameter.

  • PDF

Head Slider Designs Using Approximation Methods

  • Yoon, Sang-Joon;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • This paper presents an approach to optimally design the air bearing surface (ABS) of the head slider by using the approximation methods. The reduced basis concept is used to reduce the number of design variables. In the numerical calculation, the progressive quadratic response surface modeling (PQRSM) is used to handle the non-smooth and discontinuous cost function. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state and track seek operations. The optimal solutions of the sliders, whose target flying heights are 12 nm and 9 nm, are automatically obtained. The flying heights during the steady state operation become closer to the target values and the flying height variations during the track seek operation are smaller than those for the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band.

Prediction of Detent Force on Linear Synchronous Motor by means of Moving Least Square Method (이동최소자승법을 이용한 선형동기전동기의 디텐트력 특성 예측)

  • Kim, Young-Kyoun;Kim, Sung-Il;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.994-996
    • /
    • 2003
  • The Response Surface Methodology is frequently used for building an approximation model. However, its approximation errors often occur in engineering problem, because of the use of the Least Square Method. Therefore, this paper introduces the Moving Least Square Method to obtain the more accurate Response Surface Model, and then the detent force of a Permanent Magnet Linear Synchronous Motor is applied to verify the accuracy of the introduced method.

  • PDF

A Contact Stress Analysis in a FAM Process Using Variational Approximation Procedure (변분근사법을 이용한 FAM 과정의 접촉응력 해석)

  • Seok, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1255-1261
    • /
    • 2004
  • A variational approximation procedure is introduced to study the contact stresses between a representative asperity and a feature generally happening in superfinishing processes such as FAM. After a description of the model under consideration is presented, a system of governing equation for the model is derived fullowed by the assumptions made in order to make progress in model development. Final computation is made to evaluate contact stresses on an elastic asperity tip in small scale in size and a computer simulation is performed for detailed surface profile variations on a representative feature. Numerical results are presented along with a discussion of the conclusions that can be drawn from this analysis.

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

Comparison between Variational Approximation and Eigenfunction Expansion Method for Wave Transformation over a Step Bottom (단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.91-107
    • /
    • 2009
  • In order to compute linear wave transformation over a single step bottom, both variational approximation and eigenfunction expansion method are used. Both numerical results are in good agreement for reflection and transmission coefficients, surface displacement respectively. However x velocity profiles at the boundary of step are seen to be different to each other even though x velocity matching condition is used.