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Abstract

The slamming force occurring in the free fall impact of cylindrical bodies on the water
surface 1s analyzed in both campressible and incompressible stages. In the compressible
phase the hydrodynamic analysis is carried on by the acoustic approximation, obtaining
a closed form expression for the maximum impact force. The incompressible analysis is
approached through an unsteady boundary element method to compute the free surface
evolution and the slamming force on the body. A similar hehavior seems to characterize
the maximum slamming force versus a dimensionless mass parameter.
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1 Introduction

The free fall impact of two dimensional bodies on the water surface is analyzed and particular
attention is addressed to the arising hydrodynamic forces. Air cushion and surface tension effects
are neglecied: the former may be important for very low deadrise angles, while the latter affects
the solution only on the smallest scales. As usually done, the flow is assumed to be irratational
and the fluid inviscid: this allows the velocity field to be described in terms of a velocity potential
b,

Two different phases in the water entry process may be identified {Korobkin and Pukhna-
chov 1988). In a very early stage of the impact, the flow ts dominated by compressibility effects
where small particle displacements are observed and pressure waves are radiated into the fluid.
Successively, due (o the entry velocity reduction, a second stage follows in which large particle
displacements are produced and compressibilily effects can be definitively neglected. In particular
the formation of a water jet at the edge of the free surface is observed.

In the first stage the acoustic approximation(Skalak and Feit 1966) is employed to recover the
pressure lield on the body, while, in the incompressible phase, the unsteady flow field is computed
by means of a boundary element method (Zhao and Faltinsen 1993). In both cases the coupling
beiween hydrodynamic forces and the equation of the rigid body motion is used to compute the
actual drop velocity. The increase in wetted length produces a growth of the slamming force. On
the other hand, the drop velocily decay causes a reduction in the stamming pressure. The two
combined effects yields a maximum in the slamming force whose behavior versus characleristic
dimensionless paramelers is studied.
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2 Compressible Stage

The slamming force evolution on a cylindrical body with the y axis parallel to the waier surface,
is here investigated. A general relationship between the hydrodynaric force and the body’s shape
sectional equation is determined. When the wedge and the circular cylinder cases are considered,
the analytical expression of the corresponding maximuom impact force is determined.

It is assumed that the acoustic approximation is able to describe the pressure field on the body
surface, as specified in (Skalak and Feit 1966). For a blunt shaped body this is generally possible
if the initial drop velocity V; is small compared with the speed of sound in water ¢. Under this
conditions, if the fluid is at rest before the impact, the potential velocity ¢ satisfies the fellowing
equation:
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where S5 is the wetted body surfaces, Sy the free surface and z the axis normal to the water plane
directed downward. In the same hypotheses. the pressure and force respectively are (Skalak and

Feit 1966):
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where p is the water density and £, n are cartesian coordinates of integration defined along the
water plane. The integral is performed over the water surface region affected by the perturbation
induced by the body entry.

Moreaver, an edge Mach number M, = V;/c Jarger than one is assumed, where V, is the edge
velocity, i.e. the velocity of the boundary ling of the contact area Sp. When M, > 1 the boundary
moves faster than the perturbation waves and the previous integral must be calcnlated only on Sp
where the integrand equals the body velocity. Finally, in this phase, both gravity force and the
hydrostatic contribution are neglecied.

Let the sectional body 511ape be described by the cartesian equation z = f(z). The force per
unit length along the y-axis is then:

Bl . .
P = 2pc /0 {dg = 2pelb(t) = 2pcl £(C)

where { is the depth of the cylinder and b(¢) the distance of the boundary lines of Sg from the
plane 2 = 0. The nonlinear equation of the body motion is then:

w2l =0, — (=2 [ o 0

where mn/ is the body mass per unit length and the velocity is obtained by eliminating the time
dependence. When using this relationship, the impact force can be expressed in term of the depth:

F’(c>=2pc( -2 [ 1 dc) )



Campana ct al: Parametric Analysis of Slamming Forees ...

A relative maximum in the hydrodynamic force occurs when the force derivative equals zero,
Therefore an ordinary equation is recovered whose solution gives (g g, Lhat substituted into (2)
provides the maximum value Fy, . = F'(Cp mar). However it must be noticed that this analysis
only holds when the edge Mach number s larger than one. This restraint leads to:

o
L8 (Mo - / .f(c)dc) > 1 )
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Therefore, the maximum depth j,;,, below which the developed analysis is still valid is the solution
of the equation corresponding to the inequality (3).

As a final remark, the evaluation of the elfects of the impact force on the body velocity is of
interest. In other words it is interesting to check whether the work done by the hydrodynamic force
is significant or not with respect to the initial kinetic energy of the body. To this aim the Tollowing
reduction factor is introduced:

FE)dC (4)
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2.1 Wedge

In this case the sectional equation is z = f(z} = z/tan [, where J is the deadrise angle. Afier
some mathematics equation (2) provides the maximom impact force and the slamming coefficient
'
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where L is a characterisiic length of the wedge (e.g. that defined in the following section). In
particular this equation suggests a square law dependence of the slamming coefficient on lhe mass
parameter 2. By using {4), the reduction factor takes the forni: f, = 1 — tan fi/My. Therefore
the velocity reduction in the compressible impact stage is only important when the ratio between
the tangent of the deadrise angle and the entry Mach number is small. However, keeping in mind
that My must be much smaller than one when the acoustic approximation is used, only when very
small deadrise angles are considered a significant velocity reduction occurs.

porn’
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2.2 Circular Cylinder

In this case the sectional equation is = = 2z — z2 , where R is the circle section radius. After
some mathematics. the equation correspanding to (2} is:

Cule) = i = 7 {1~ i [cos T (L= ) — (L- V2L — &)} V2 - 2
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whose maximum occurs in correspandence of
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Figure 1: a) Slamming coefficient versus mass parameter and entry Mach number.
b) Velocity reduction factor versus mass parameter and entry Mach number.

The combined solution of the previous equations leads to the maximum slamming coefficient
as a function of the two dimensionless parameters p and M. Results, plotted in Figure la, show
that high values of the slammming coefficient arise especially for small entry velocity Mach numbers
and large mass parameters.

Finally the velocity reduction factor is recovered by using (4) that, afler some mathematics,

becomes: f, = 1 — _‘m The plot of f, is sketched in Figure 1b: high values of the

velocity reduction factor occur when small values of p are considered.

3 Incompressible Stage

When the edge Mach nurber is much smaller than one, the incompressible approximation holds.
In this case the velocity potential ¢, satisfying the Laplace equation in the fluid domain, is solved
by means of a boundary element formulation. In any point z inside the domain the velocity
potential is:

sar= [ |GEmeE ) s o -] ast) ©
JsalUse OV v

where (G is the two dimensional Green's function of the Laplace operator and v is the inward unit
normal vector. At each time step the normal derrvative of ¢, accordingly to the impermeability
condition, is assigned on 55 while, on the [ree surface, the velocity potential is provided by the
unsteady Bernoulli’s equation:

2
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According to Zhao and Faltinsen(1993), the gravity term in using (6) will not be considered in the
following neglecting its effects on the dynamic evolution of the free surface. The velocity potential
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on 5y and its normal derivative on S are determined by selving the integral equation obtained
by applying (5) on the boundary of the fluid domain Sg | ) Sp.

The problem is numerically solved by using a procedure similar to that propased by Zhao and
Faltinsen(1993). In the following only a brief description of the scheme and main differences
with respect to the original one are discussed. The boundary of the fluid domain is discretized by
segments on which the velocity potential and its normal derivative are assumed to be constant. A
second order Runge-Kutta scheme is employed for time integration of the free surface evolution
and the associated potential. The free surface is updated by moving the midpoint of each panel
and then using a cubic spling to reconstruct the vertices distribution. For the sake of accuracy, at
each time step, the panel distribution on the free surface in highly curved regions is refined.

The formation of the water jet at the edge of S is associaled with the velocity singularity that
needs a suitable procedure in the frame of the numerical scheme. Actually, during the first time
steps the problem exhibits a weak velocity singularity, and the free surface is assumed to intersect
the body. Successively, a thin water jet develops, characierized by strong velocity gradient normal
to the body contour. When the distance of the midpoint of the first free surface panel from Sg
becomes smaller than a cut-off length. the first panel is replaced by a segment orthogonal to the
body surface. On this efement a linear variation of the velocity potential is assumed as in Zhao
and Faltinsen{1993). During time integration, whenever the angle between the second panel on the
free surface and the body contour becomes smaller than a limiting angle of 2°, it is excluded and
the linear element is moved back. Once the velocity potential along the body surface is known,
the dynamic pressure distribution is computed by the unsteady Bernoulli’s equation, neglecting
the gravity lerm.

To validate the numerical procedure, a constant drop velocity Vo = 2m/s is assigned to a
wedge with a deadrise angle o = 10°. In Figure 2a free surface configurations at several instant arc
shown. Analytical approaches to this problem show the existence of similarity solution: numerical
scheme appears to be able to reproduce this behavior.

In order 1o simulate the free fall of the wedge, the equation of the rigid body motion is inte-
grated to provide the actual drop velocity. The equation of the rigid body motion reads:

ml - ro m/ .
Q”__+9(?H> (8)

where 11 is the body volume below the undisturbed free surface. The last contribution in (7)
accounts for the balance between the body weight and the hydrostatic restoring force and is the
only contribution for ¥ — 0. In Figure 2b the time histories of the drop velocity is shown for
several values of the mass parameter. This is defined by assuming as characteristic length the
ratio Vi /g. In the first siage, due to gravity effects, the body accelerates. Successively, due
to the combined effects of the slamming and the hydrostatic resioring forces, the drop velocity
decays yielding a pressure reduction. In Figure 3a the time histories of the slamming force for the
same mass parameters adopled before are shown. along with the line representing the numerical
result obtained by Zhao & Faltinsen(1993) for a consiant drop velocity (i.e. ¢ — o0). 1t should
be remarked that this line is obtained by using the slamming parameter F'/{pV*) reported in
Zhao and Faltinsen(1993) and does not represent an effective time history. A sharply growth
characterizes the slamming force at the beginning of the iimpact. Successively, the modeling of
the jet formation induces numerical oscillations that are reduced by applying a proper filier lo the
time histories. Bven though weak perturbations still remain, the occurrence of a maximum in the
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Figure 2: a) Dimensionless free surface clevation at different time steps.
b) Time histories of the drop velocity for several mass parameter.
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Figure 3: a) Time histories of the slamming force for several mass parameters.
b} Maximum slamming force versus the mass parameter.

slamming force (denoted by a cross) is evident and, as in Vorus(1996), this value grows with the
mass parameter.

The behavior of the maximum is shown in Figure 3b versus the mass parameter, along with
the square law obtained for the compressible stage. An analogous increasing trend is characterstic
for both phases, although the correlation laws are slightly different.

4 Concluding Remarks

The impact of cylindrical bodies on the water surface has been analyzed in both the compressible
and incompressible stages. In the former an analytical expression for the maximum of the slam-
ming force is found for the wedge and the circular cylinder. In the latter a pumerical simulation of
the slamming process is carried out for the wedge and the maximum slamming force is evaluated.
In both cases this value exhibits a similar increasing trend versus the mass parameter.
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