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A Study on Simple Adaptive Control of
Flexible-Joint Robots Considering Motor Dynamics
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Abstract : Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear system, it is difficult and
complex to design the controller for electrically driven flexible-joint (EDFI) robots. In this paper, we propose a simple adaptive
control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor
dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the
robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in
the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are

provided to validate the effectiveness of the proposed control system.
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LINTRODUCTION

During the past several years, the tracking control of the flexible
joint (FJ) robots has attracted many researchers due to the joint
flexibility. There are many works using various control techniques
such as PD control[1], sliding mode control[2,3], fuzzy control[4,5],
neural network (NN) control{7,6], and backstepping control[9-11].
However, all of these schemes have ignored the dynamics coming
from electric motors which should be required to implement the FJ
robots in the real environment. Considering motor dynamics makes
difficult and complex to design the controller for electrically driven
flexible-joint (EDFJ} robots which is the fifth-order nonlinear system.
Even if a recent result was reported for EDF) robots, the uncertainties
of the joint flexibility were not considered in [12].

On the other hand, among many Lyapunov-based nonlinear control
techniques in the literature, Swaroop et al[13] recently proposed a
dynamic surface control (DSC) method to solve the problem of
“explosion of complexity” in the backstepping design procedure
caused by the repeated differentiations of virtual controllers. Therefore,
the controller using the DSC technique can be much simpler than that
using the traditional backstepping approach. Recently, we apply the
DSC idea to control the flexible-joint robots[14]. However, the motor
dynamics is not considered.

In this paper, we propose a simple adaptive control approach for
EDFJ robots with uncertainties and disturbances. The dynamic
surface methodf13] which can solve the “explosion of complexity”
problem of the backstepping technique is applied to design a simple
controller of EDFJ robots. In addition, the function approximation
technique using self-recurrent wavelet neural networks (SRWNNs)
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[15] and the adaptive technique are employed to compensate the
model uncertainties and disturbances. From Lyapunov stability
analysis, it is shown that all signals in a closed-loop adaptive system
are uniformly ultimately bounded. Finally, we simulate an uncertain
three-link EDFJ manipulator with complex nonlinear functions to
demonstrate the simplicity and the robustness of the proposed control
scheme.

This paper is organized as follows. In Section II, we introduce the
model and basic properties of EDFJ robot systems with uncertainties.
In Section II1, the function approximation technique using SRWNN is
presented and a simple adaptive control system for solving the robust
control problem of the EDFJ robot system is proposed. In addition, the
stability, robustness, and performance of the proposed control system
are analyzed based on Lyapunov stability theorem. Simulation results
are discussed in Section TV, Finally, Section V gives some conclusions.

II. PROBLEM FORMULATION
The dynamic model of an uncertain »-link EDEJ robot consists of
robot dynamiics, joint flexibility, and motor dynamics described by
using the following forms:

M(q)g +Clg.9)q+G(g)+ Fq

. )
+K,(¢-9,)+Y,(4,4,9,)=0
Jg,+Bq,+K,(q,~q) @
+Y,(4,,9,,9.1.) = Hi,
Zie+Rie+Keqm+Ye(Qm’ie):u (3)

where ‘
Y,(9.4.9,) = ~M(@) M (@K (@ — D
~T, - F4-G(9) - C(4,9)4}
+{K, (g, —9) - Fq-G(@) - C(g,9)4}.
and

Y (GG oi) =~ T 4HI, ~ T, = K,{q,,— 9)~ Bd,}
+{Hi,~ K, (q,—-9— B4,k
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Y.(4,.1,) =(R-R), +(K.—K,)g,+T, including the external
disturbances 7, 7,, and T, € R", denote the uncertainty terms of
robot dynamics, joint flexibility, and actuator dynamics of the EDFJ
robot system, respectively. Here, ¢, ¢, § <R" denote the link
position, vectors,  respectively.
M(q)eR™ is the nominal inertia matrix, C(g,4)eR™"

velocity, and acceleration
denotes the nominal Coriolis-centripetal matrix, G{g) & R” is the
nominal gravity vector, and F € R™ is a nominal diagonal,
positive definite matrix representing the coefficient of friction at each
joint. ¢q,,, ¢,, 4, € R” denote the actuator position, velocity,
and acceleration vectors, respectively. The nominal constant positive
definite, diagonal matrices X, e R™™, JeR™", and BeR™
represent the joint flexibility, the actuator inertia, and the natural
damping term, respectively. H € R™™ is a nominal invertible
diagonal matrix which characterizes the electromechanical conversion

between current and torque. i, € R” is the armature current

vector of » dc joint motors, L are an actual positive definite
constant diagonal matrix denoting the electrical inductance of the
motors. R and K, € R”" are nominal positive definite constant

diagonal matrices denoting electrical resistance and back
electromotive force constant of the motors, respectively. The control

vector u € R” isused as the torque input at each actuator.

Assumption 1. Suppose that the nominal matrices M(q) ,
Clq.9), Gg), F, K,, J, B, H, R, and K, are only
known, but the actual matrices M(q), E(q,é), 6(q) , F, Koo
J,B, H,L, R,ad g, with model uncertainties, and the
external disturbances 7., T,,and T, are unknown.

Assumption 2. The system states ¢, ¢, ¢,,, ¢, , and i, are
all available for feedback.

Assumption 3. The desired trajectory vector g, , its first and
second derivatives ¢, §, areonly available, and bounded.

Remark 1. Assumption 1 means that the uncertainties are expressed
by the difference between the nominal values and the actual values.
Assumption 2 means that the proposed control system consists of a
full state feedback controller. Assumption 3 means that our controller

via the dynamic surface design technique does not require g, and
G, compared with the controller via the backstepping technique[9-12].

Property 1.[9] The link inertia matrix M(q) is symmetric,
positive definite, and both AM(g) and M™'(g) are uniformly
bounded.

Property 2. ”M"l(q)Km.LSMm where M, is a known

positive constant, and "" X denotes the matrix induced two-norm.

Property 2 is reasonable due to Property 1 and a constant positive
definite matrix X, .

Define the state space variables as x, =¢q, x,=¢, x;=¢g,,
x,=4¢,,and x; =7 . Then, the uncertain EDFJ robot system is
described as the following state-space forms:

X1 = X, 4)

MO - 22 - AIAESS =2X H 14 &, A 11 & 2008. 11

X2 = Mgl(xl)[_c(xlzxz) - G(xl) - F(xz)
~K x,+K,x,]+E,(x,),
X3 = Xy, 6)

®

g =J V[Bxy — Kpy(x3 - x) + Hrs]+Eg(xg), (D
fos =—Rx; - Kx,+E (x,) +u ®
T T .T T+

xa:[x1x3x4x5] 3 xez

where x =[x x x I,

[ <L, 5 =My, 5,=-J'Y, and B, =-T,.
The objective of this paper is to design a simple adaptive control
law u for the state vector x, of EDFJ robots to track the desired

trajectory vector ¢, under Assumptions 1-3.

M. MAIN RESULTS
1. Function approximation technique

To compensate the unknown uncertainty terms, we use the self-
recurrent wavelet neural network (SRWNN) and the adaptive
technique. That is, the uncertainty terms = (x,} (j=7,0,e) are
approximated by SRWNN and the unknown actual diagonal constant
matrix I s estimated by the adaptive technique.

The SRWNN consists of the four layers, ie, an input layer, a
mother wavelet layer including self-loop weights, a product layer, and
an output layer. See [15] for the detail structure of the SRWNN.

According to the powerful approximation ability, the SRWNN
systems % (1) can approximate the uncertainty terms () to a

sufficient degree of accuracy over compact sets K . B follows:

Ej(xj) = éj(xj 'n/j*)'f'gj(xj)
=50 )+ &5, 7)) ©

_éj(xj IV/I},)]‘*' 8j(xj)

where j=r,a,e, x, er, are the inputs of SRWNN systems,

denote  reconstruction  errors,

£,(x;) W, =diagly . ]
(i=1,2,---,n) are estimated weighting matrices, and W, are

optimal weighting matrices. Here, diag[ ] denotes a diagonal matrix,
and jy, are estimated weight vectors. The optimal weighting

matrices /] for SRWNNs & () are defined as
W, =argming [sup, ., [E,(x)~2 (x, 17 -

Assumption 4[15] Assume that the optimal weight matrices are
bounded as [}

[F Wy where j=r,a,e, ""F denotes the
Frobenius norm.
Note that the bounded values /¥, ,, are not required to implement

the controller proposed in this paper. These values are used only for
the stability analysis of the proposed control system. Taking the

Taylor series expansion of & (x,|W;) around g, for the
training of all weights of the SRWNNSs, respectively, we can
obtain[16]

B W) -5, |7 ) =770, +H,(W,.i7 )  (10)
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where j=rae, J(O=W - (), © =[E, /oW,
O, /W, 08, 16W, T, H.(W,,) , are high-order

terms. Substituting (10) into (9), we obtain
=) =8, 17 )+ 70, +a an
| < e, (12)

where j=r.ae ., a, :Hj(Wj*,p/[}j)+gj(xj) - p; >0 are
unknown values used only for the stability analysis of the proposed
control system.
2. Adaptive controller design
In this section, we present the dynamic surface design approach for
designing a simple adaptive control of EDFJ robots. The proposed
control system s designed step by step.
Step 1 : Consider the link dynamics (4)-(5). Define the first error
surface vector s, as
5 =% -4, Ax —q,) (13)
where A denotes a positive definite diagonal matrix. Differentiating
(5) yields
$1= M7 ()[=C(x,%,) = G(x) = F(x,)
- Kmxl + Kmx3] + Er (xr) - qd
+A(x, —g,).
Then, we choose the virtual control law v, as

v, =K K, x +C(x, %)+ G(x,) + F(x,)+ M

~ —~ (14)
X {‘klsl - Er(xr | Wy)+'q'd‘ A(xz 76}4)}]

where & >0 is a constant. 7 s the estimate of the weighting
matrix W, , and is updated by the adaptation law using a o -
modification[17] as follows:

V/I}r,i = ﬂ’l,i®r,isi,i - Ul/z‘uwr,/ (15)

where i=1,---, s, 4 isa tuning gain matrix, and o, >0 . Here,
w,, and A, arc the ith diagonal element of j and 4,
respectively. ©,, and s, are the ith element of @, and s,,
respectively.

For the filtered virtual controller Viss the virtual controller v, is

passed through the first-order low pass filter
T+ Vi =V, V(0 =1 (0) (16)

with a time constant 7, .

Step 2 : Consider (6). The surface error is defined as s, = x, — v, .
and its derivative is §,=x, —y,,. Then, choose the virtual control
law using (16) as

v, =—kys, + (v, — v, )T, am
where k, >0 is a constant. To obtain the filtered virtual controller

Vs, we pass v, through a first-order low pass filter with a time

constant 7, >0 as follows:

Tyvar + Vap =Vy, W, /‘(0) =1,(0). (18

Step 3 : Consider (7). Define the surface error, with the filtered
virtual control vector v, , as s, = x, — v, . Then, differentiating it

and substituting (7) yields
§3= X4~ Vay
=J '[-Bx, - K, (%, —x,) + Hx,] (19)
+E,(x,)— Vars

Then, we choose the vittual control law v, as

vy = H'[K, (x, — %) + Bx, + J{~k,s, 0)
B )+ (v vy ) T

where k; is a positive constant. jp  is the estimate of the
weighting matrix W _, and is updated by the adaptation law

Wa,/ = ;L2,i®a,is3,i - GMQ,:‘V/I}W ey
where i=1,---,n, 4, is a tuning gain matrix, and o, >0 . Here,
W., and A, are the ith diagonal element of f  and 4,,
respectively. @, and s;, are the ith element of ©, and s,
respectively. In addition, the filtered virtual control law v,, is
obtained by the following first-order filter:

TtV =V, Yy, (0)=v,(0) (22)
whete 7, is atime constant.

Step 4 : Consider (8). Define the surface error 5, = x; — vy By
differentiating it, we obtain
Liy=Lsis—Lps,

_ (23)
=~Ri,—Kx, +E (x,)+u—Lys,.
Then, the actual control law # is chosenas
u=-ks, +Rx; + K x
474 5 4 (24)

- ég(xe \ Wg) +‘§(V3 _sz)/fg

where k, is a positive constant, and jp and 9 are the estimated

matrices of the matrix V/I;e and =1 , respectively, and are
updated by the adaptation laws

I?V@,,- = /’23,1‘@@,1'34,:‘ - 0323,1'We,i (25)
. vV, =V, i
.= A wr—msu — 04, 8, {26)

3
where /=1,---,n, A, and A, are tuning gain matrices, and
oy,0,>0 . Here, j,,, §, A4,,and A,; arethe ith diagonal

element of i, , 9, 4,, and 4,, respectively. © S4is Viis

ei

and v are the /th element of ®,, s,, v, , and v

37,0 3f
respectively.
3. Stability analysis

In this subsection, we prove the uniformly ultimately boundedness
of the solution of the proposed control system. We first derive analytic
expressions of the closed-loop system. Define the boundary layer

errors as follows:

Yi=Vye =V, @7
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where [=1,2,3.

Using (11), (14), (17), (20), (24) and (27), the derivatives of the
error surfaces can be rewritten as follows:

S=MT(x)K, (s, +3) ks, + 7O, +a,, (28)
6“2:53 +y2_kS7= (29)
§3=J H(s, + ;) ks, + 7.0, +a,, (30)
Lii=—kys, +i70, +a,+822, 31

T

3

where d=9-9. Differentiating (27), we can obtain

. Y
Yi== T1+P(Slaszay1’Wde) (32)
1
L yz P
y27 T + (Slaszasgaypyz’Wran) (33)
2
. __& P .
Yi= . HP(81,80,85806 V1 Ve VoW oW o @a)s - (34
3
where O, =g, q, qd] s })I(Sl’sz7y17V,I>,’Qd):_K;;I[Kmxl
+Fi2+§xl+§xl+‘:—x2+%¢x.{—ks +4, -5 1w, - A,

G+ MO s+ g, - E -, - A —d)H. P

fnn - . Y
(SUSZ’S}’yl’yZ’Wr’Qd)‘kZSZ*’,_l L] and P3(S|,S2,S3,S4,y],y2

y3’V’I;r’I//I>a’Qd) = ‘Hﬁl[Km()'Cs 0+ B+ J{-ky 55—

81 )’Ca
08, ~

o,

- %2}] are continuous functions.

Let us consider the following Lyapunov candidate function

ZSISI+S4LS4+Zy1y1+W(W Zq W)
=1 (3%

MG 20 7 )+ G s )+ ir(§ 49)

where 4, =diag{4,;] (I=1--4), (i=12,-

tuning gains. #( ) denotes the trace of a matrix.

Theorem 1. Suppose that the uncertain EDFJ robot (1), (2), and (3)
is controlled by the proposed controller (24). If the proposed control
system satisfies Assumptions 1-4 and the adaptation laws are chosen
as (15), (21), (25), and (26), then for any initial conditions satisfying
V(0)< u, there exist k,, o,, and 4, (/=1,2,3,4) such that
the errors of states and adjustable weights of the closed-loop system
are uniformly ultimately bounded and may be kept arbitrarily small.

Proof Differentiating the Lyapunov candidate function (35) and
substituting (15), (21), (25), and (26), (28)-(34), we can obtain

,n) A, are the

V=s/ (MK, (5,+y) ks, +a,)

—k,s,)

5] (JTH(s, +y) — ks, + )

+5, (ks +a)+otr(FLw,) (36)
+ Ot (L )+ ostr (7 o7 ) + .41 (3L §,)

SINIRY
+Zy,(——+P,.
=)

LT

T
+5, (85 + ¥,

From the boundedness of O, and the existence of u, there

Hol- 22 - AAESE =2X H 14 3, M 11 & 2008. 11

exists a positive constant R, such that [|BH < R, . Therefore, using

Property 2, Assumption 3, (12), and the fact 2z,z, <z’ + 2} yields

f

V< (%+ M)|sI
R

M 3
+(1+J)HJ’1 1]2+*llyzﬂ2

1.1
+(1+JL)H%\I += P2+ A

Sk S

> 1

F 7503
lO' W 2 +l(f W 2
2 Ve M 2 2" a,M

5

F

WE

1 —
27

1 ~I12
B 504 ”lng- +

1 1
+ Eo'zW:M + 5% ||‘9“2r

where J is a maximum eigenvalue of J™'H . Here, choosing
=(UD)+ M, +k ,

ko=(1+J)2+Kk,

ky=1+(M /2)+k, , ky=J,+1+k ,
Ve =1+(M /2y +y, 1z,

+y,and Ve, =14+(J,/2) +y;,

=(3/2)

V<

2 1 —
” 75‘71 EO-Z

Lol Sl vo o

Ly
2 3
<2V +0.

* ] 2 1 2 1 2

where k>0, y, >0, O=s0oW  +y0 W,  +50W, +
1 2 1 201 2 1 2] 2 s g
Lo, + 30 +50. v 50 +IZH R} and 0<¢ <mink,
]. Here 4,,,4,,.,

are the minimum eigenvalues of 4, 4,, 4, and

O O2hom O3ham ‘7414,m

k;,k;,k:/LM,%,]/z,}ﬁ, 2‘ 3 z' » 21 » 2
oy a0l 4,

2, , respectively. (37) implies that V<0 on ¥V=u when
V > (0/2) . Accordingly, all signals in the controlled closed-loop
system are uniformly ultimately bounded. Besides, the errors can be

kept arbitrarily small by adjusting K;, 7., o,, 4 ((=1--,4),

j 3
(j=1,2,3). That is, the tracking error s, can be made arbitrarily
small. This completes the proof of the theorem.

Remark 2. In the adaptation laws (15), (21), and (25), the partial
©_,,and O, for tuning all weights of the

SRWNNS s can be evaluated by the chain rule, as illustrated in [14].

Remark 3. Compared with the previous papers [9-12], the proposed
control method does not require the repeated derivatives of the virtual
controllers because they are computed easily by the first-order filter.
Thus, the proposed control system can be simpler than the
backstepping control systems reported in[9-12]. In addition, while the
uncertainties of the joint flexibility were not considered in [12], the
proposed control system considers it.

derivative terms ®
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IV. SIMULATION RESULTS
In this section, to illustrate the validity of the suggested adaptive
control system, the three-link EDFJ manipulator with model
uncertainties and external disturbances is considered.

The reference signals are defined as g, ={q,, q,, 9,51 Where
qy =cos(1.5t+7/3), ¢, =12cos(1.5¢), and g,, =0.8cos
(1.5¢) . The pominal robot dynamics used in [15] is used. The
nominal robot parameters of the three-link EDFJ manipulator are
defined in Table 1. In this simulation, the link masses m; s in the
H, R,and K, inthe

actuator dynamics are assumed to be uncertain. It is assumed that the
masses in the robot dynamics have 350%, 100%, and 50%
uncertainties, namely, the actual mass values 7, with uncertainties

robot dynamics, and the parameters K

m

ae =15, m,=14, and 7;,=2.1. The nominal and actual
EDFJ parameters are given as

J = diag[0.03 0.03 0.03]
K,, = diag[100100 100]
R =diag1.21.21.2]

B =diag[555]

H = diag[161010]

K, = diag[15.615.615.6)
&, = diag[106.2105.6103.2]
L = diag{0.048 0.048 0.048]
K, = diag{15.215.916.1] .

H =diag[10.511.211.1]
R =diag[2.31.52.5]

In addition, the time invariant and varying external disturbances 7,

T,,and T, givenby

T=T,=T =[5 5 5, if 1<t<1.5
T.=T, =T =[3cos(t) 2sin(t) cos()l, if2.5<¢<3
: [

=T =T =[0 0 O, otherwise

a ¢

are assumed to influence the actual EDFJ robot model. In this
simulation, the initial positions of the three-link FJ manipulator are set
o ¢,(0)=4,(0)=¢,(0)=0 and the controller parameters for the
proposed control system are chosen as k, =65, A=diag
[8 10 15], A, =diag[0.00001 0.06002 0.0001}, A, =diag
[0.000002 0.000002 0.000002], o, =0.01, and 7, =0.001
(I=1..,4) (j=12,3). We employ the SRWNNI system
=,(), the SRWNN2 system £ (-), and the SRWNN3 system
2,() . Here, note that only one product node is used for each
SRWNN.

The tracking results and errors of the proposed control system as
shown in Fig. 1 indicate that the suggested method can overcome

1L EX FYIHE 9T T

Table 1. The nominal parameters for the robot dynamics.

Mass (kg)| Link (m) | Moment of Inertia (kgmz)
Joint 1 1.0 0.5 43.33x 107
Joint 2 0.7 0.4 25.08% 107
Joint 3 1.4 0.3 32.67x 107

11, November 2008 1107

unknown model uncertainties resulting from the robot dynamics, joint
flexibility, and the motor dynamics, and time-varying external
disturbances. Fig. 2 displays the outputs of the SRWNNs and
estimates of diagonal elements of 9. Fig. 3 show the L, norm of
weights of SRWNNs. Note that the uncertainty terms (£, (), E,(),

2,(), &) are approximated by SRWNNs and the adaptive
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technique, effectively. Besides, we can see that all signals in the

closed-loop system are bounded.

In this paper, a simple adaptive control system for the EDFJ robot
with model uncertainties has been developed. First, the dynamics of

V. CONCLUSION
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the EDFJ robots has been introduced. Second, the simple control law
using the DSC techinique and SRWNNSs has been designed for the
tracking control of EDFJ robots with model uncertainties and external
disturbances. Third, from Lyapunov stability analysis, it is proved that
all signals in the closed-loop system are uniformly ultimately bounded.
Finally, from the simulation results for three-link EDFJ manipulator, it
was shown that the proposed control system has the good tracking
performance and the robustness against model uncertainties and
external disturbances. Further studies on the effective learning of
parameters and the application to the real system through the
experimentations are recommended as a future work.
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