• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.029 seconds

Improving the Generalization Error Bound using Total margin in Support Vector Machines (서포트 벡터 기계에서 TOTAL MARGIN을 이용한 일반화 오차 경계의 개선)

  • Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2004
  • The Support Vector Machine(SVM) algorithm has paid attention on maximizing the shortest distance between sample points and discrimination hyperplane. This paper suggests the total margin algorithm which considers the distance between all data points and the separating hyperplane. The method extends existing support vector machine algorithm. In addition, this newly proposed method improves the generalization error bound. Numerical experiments show that the total margin algorithm provides good performance, comparing with the previous methods.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Comparison of Machine Learning Analysis on Predictive Factors of Children's Planning-Organizing Executive Function by Income Level: Through Home Environment Quality and Wealth Factors

  • Lim, Hye-Kyung;Kim, Hyun-Ok;Park, Hae-Seon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.651-662
    • /
    • 2021
  • Background and objective: This study identifies whether children's planning-organizing executive function can be significantly classified and predicted by home environment quality and wealth factors. Methods: For empirical analysis, we used the data collected from the 10th Panel Study on Korean Children in 2017. Using machine learning tools such as support vector machine (SVM) and random forest (RF), we evaluated the accuracy of the model in which home environment factors classify and predict children's planning-organizing executive functions, and extract the relative importance of variables that determine these executive functions by income group. Results: First, SVM analysis shows that home environment quality and wealth factors show high accuracy in classification and prediction in all three groups. Second, RF analysis shows that estate had the highest predictive power in the high-income group, followed by income, asset, learning, reinforcement, and emotional environment. In the middle-income group, emotional environment showed the highest score, followed by estate, asset, reinforcement, and income. In the low-income group, estate showed the highest score, followed by income, asset, learning, reinforcement, and emotional environment. Conclusion: This study confirmed that home environment quality and wealth factors are significant factors in predicting children's planning-organizing executive functions.

A Control Method of ASMR Contents through Attention and Meditation Detection Based on Internet of Things (사물인터넷 기반의 집중도 및 명상도 검출을 통한 ASMR 콘텐츠 제어 기법)

  • Kim, Minchang;Seo, Jeongwook
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1819-1824
    • /
    • 2018
  • This paper proposes a control method of ASMR(autonomous sensory meridian response) contents to relieve user's stress and improve his attention. The proposed method measures EEG(electroencephalography), attention, meditation, and eyeblink data from an EEG device and sends them to an oneM2M-compliant IoT(internet of things) server platform through an Android IoT Application. Then a SVM(support vector machine) model is built to classify user's mental health status by using EEG, attention and meditation data collected in the server platform. The ASMR contents are controlled by the mental health status classified by a SVM model and the eyeblink data. When comparing the SVM models according to types of data used, the SVM model with attention and meditation data showed accuracy of 85.7%. It was verified that the proposed control algorithm of ASMR contents properly worked as the mental health status from the SVM model and the eyeblink data changed.

A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine (서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정)

  • Kwon, Su-Young;Lee, Seung-Jae;Kim, Man-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • Recently, an R-based point time series data validation system has been established for the statistical post processing and improvement of the National Center for AgroMeteorology-Land Atmosphere Modeling Package (NCAM-LAMP) medium-range prediction data. The time series verification system was used to compare the NCAM-LAMP with the AWS observations and GDAPS medium-range prediction model data operated by Korea Meteorological Administration. For this comparison, the model latitude and longitude data closest to the observation station were extracted and a total of nine points were selected. For each point, the characteristics of the model prediction error were obtained by comparing the daily average of the previous prediction data of air temperature, wind speed, and hourly precipitation, and then we tried to improve the next prediction data using Support Vector Machine( SVM) method. For three months from August to October 2017, the SVM method was used to calibrate the predicted time series data for each run. It was found that The SVM-based correction was promising and encouraging for wind speed and precipitation variables than for temperature variable. The correction effect was small in August but considerably increased in September and October. These results indicate that the SVM method can contribute to mitigate the gradual degradation of medium-range predictability as the model boundary data flows into the model interior.

Design of umbrella arch method based on adaptive SVM and reliability concept (Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구)

  • Lee, Jun S.;Sagong, Myung;Park, Jeongjun;Choi, Il Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.701-715
    • /
    • 2018
  • A reliability based design approach of the tunnel reinforcement with umbrella arch method was considered to better represent the uncertainties of the weak rock properties around the tunnel. For this, a machine learning approach called an Adaptive Support Vector Machine (ASVM) together with the limit equilibrium method were introduced to minimize the iteration numbers during the classification training of the tunnel stability. The proposed method was compared with the results of typical Monte Carlo simulations. It was concluded that the ASVM was very efficient and accurate to calculate the probability of failure having auxiliary umbrella arches and uncertain material properties of the tunnel. Future work will be concentrated on the refinement of the fast adaptation of the SVM classification so that the minimum number of numerical analyses can be used where the limit solution is not available.

Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine (지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측)

  • Jang, K.H.;Choi, J.L.;Yoo, T.K.;Kwon, M.K.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

Defect Diagnostics of Gas Turbine Engine with Mach Number and Fuel Flow Variations Using Hybrid SVM-ANN (SVM과 인공신경망을 이용한 속도 및 연료유량 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Choi, Won-Jun;Lee, Sang-Myeong;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.289-292
    • /
    • 2006
  • In this paper, the hybrid algorithm of Support Vector Machine md Artificial Neural Network is used for the defect diagnostics algorithm for the aircraft turbo-shaft engine. The results of learning of ANN, especially, accuracy or speed of convergence are sensitive to the number of data, so a comparison between design point and off-design area, especially, Mach number and fuel flow variable area, is essential research. From application results for diagnostics of gas turbine engine, it was confirmed that the hybrid algorithm could detect well in the of-design area as well as design point.

  • PDF

AN APPROACH TO THE TRAINING OF A SUPPORT VECTOR MACHINE (SVM) CLASSIFIER USING SMALL MIXED PIXELS

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • It is important that the training stage of a supervised classification is designed to provide the spectral information. On the design of the training stage of a classification typically calls for the use of a large sample of randomly selected pure pixels in order to characterize the classes. Such guidance is generally made without regard to the specific nature of the application in-hand, including the classifier to be used. An approach to the training of a support vector machine (SVM) classifier that is the opposite of that generally promoted for training set design is suggested. This approach uses a small sample of mixed spectral responses drawn from purposefully selected locations (geographical boundaries) in training. A sample of such data should, however, be easier and cheaper to acquire than that suggested by traditional approaches. In this research, we evaluated them against traditional approaches with high-resolution satellite data. The results proved that it can be used small mixed pixels to derive a classification with similar accuracy using a large number of pure pixels. The approach can also reduce substantial costs in training data acquisition because the sampling locations used are commonly easy to observe.

  • PDF

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.