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Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl 
groups from ε-N-acetyl lysine amino acids of histone proteins. Their action is opposite 
to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few 
HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of 
new and potential HDAC inhibitors are necessary in the effective treatment of cancer.

Materials and Methods: This study proposed a method using support vector machine 
(SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound 
filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 
inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors 
was calculated for all compounds in the dataset using ADRIANA. Code of Molecular 
Networks. Different kernel functions available from SVM Tools of free support vector 
machine software and training and test sets of varying size were used in model genera-
tion and validation.

Results and Conclusion: The best model obtained using kernel functions has shown 75% 
of accuracy on test set prediction. The other models have also displayed good prediction 
over the test set compounds. The results of this study can be used as simple and effec-
tive filters in the drug discovery process.
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INTRODUCTION

Much has been written recently concerning the impact of drug/
nondrug (inhibitors/non-inhibitors) classification in the field 
of drug discovery. Early-phase virtual screening and compound 
library design often employs filtering routines which are based 
on binary classifiers and are meant to eliminate potentially un-
wanted molecules from a compound library1-3. The support vec-
tor machine (SVM) is the most often used classifier in these ap-
plications. The SVM is firstly proposed for classification by V. 
Vapnik in 19954. It has been widely applied to various areas of 
research in drug discovery5-8, and first application in molecular 
informatics and pharmaceutical research have been described9-11. 
The standard scenario for SVM classifier can be summarized in 
two stages: training and testing. In first stage, sample data are 
basically n-dimensional vectors which are calculated by descrip-
tor algorithms with a class membership label attached. And the 
SVM generates a classifier for prediction of the class label of test 
data during the second stage.
  Histone deacetylases (HDACs) are a class of enzymes that re-
move acetyl groups from ε-N-acetyl lysine amino acids of his-
tone proteins (Table 1). Their action is opposite to that of histone 
acetyltransferases (HATs) that add acetyl groups to the same ly-
sine residues12. Acetylation is a post-translational modification 
that controls the biological function and stability of proteins in 
eukaryotic cells13. HDAC enzymes are classified into four differ-
ent classes based on their phylogeny and domain organization14. 

The HDAC8 enzyme belongs to the class I enzymes which are 
found primarily in the nucleus15. Except HDAC8, functional HD
ACs are not found as single peptides but as multimeric com-
plexes of higher molecular weight and also most of the purified 
HDAC enzymes are functionally inactive13,16. Along with this 
advantage, expression of HDAC8 notably correlates with the 
disease stage of neuroblastoma, a highly malignant childhood 
cancer derived from the sympathetic nervous system17,18. More-
over, an RNA interference study showed that HDAC8 is involved 
in the regulation of proliferation, clonogenic growth and neuro-
nal differentiation of neuroblastoma cells. Inv1, an abnormal 
fusion protein formed during acute myeloid leukemia binds 
HDAC8, is also associated with aberrant, constitutive genetic 
repression19. Therefore, HDAC8 is considered to be the best mo
del among other mammalian HDACs from a structural biology 
and drug discovery perspective. Only a few HDAC8 inhibitors 
are approved by FDA and being used as anti-cancer therapeu-
tics. Thus, the discovery of new and potential HDAC8 inhibitors 
is necessary in the effective treatment of cancer. All HDAC in-
hibitors till date possess common structural features including 
metal binding and surface binding moieties along with a linker 
of four to six carbon chains long that connects metal and sur-
face binding moieties20. This arrangement of chemical features 
is necessary to bind the tunnel like active site present in HDACs21.
  In this study, we used the SVM algorithm to classify HDAC8 
inhibitors and non-inhibitors in early-phase virtual compound 
filtering and screening of drug discovery process. A set of mo-
lecular descriptors was calculated for all compounds in the da-
taset using ADRIANA.Code of Molecular Networks Inc. Differ-
ent kernel functions available from SVM Tools were used in mo
del generation and validation (Figure 1). The proposed method 
is effective and efficient in classifying known HDAC8 inhibitors 
with high correlation.
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Figure 1. Architecture of the proposed study. 

Table 1. Different classes and members in the family of HDACs

Class HDACs

Class I HDAC1, HDAC2, HDAC3, HDAC8
Class II HDAC4, HDAC5, HDAC6, HDAC7A, HDAC9, HDAC10
Class III Sirtuins (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7)
Class IV HDAC11
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RESULTS AND DISCUSSION 

Model generation
The main aim of this study is to find a valid SVM model to clas-
sify HDAC8 inhibitors and non-inhibitors, we tried many ex-
periments with the biological responses and calculated molec-
ular descriptors by SVM software and compared the performan
ce based on different input patterns and different kernel func-
tions. Four basic kernel functions such as linear, polynomial, 
radial basis function (RBF), and sigmoid kernel functions were 
used in this study (Table 2).
  The effective and efficient model was obtained by all 4 kinds 
of kernel functions. The SVM models were generated with dif-
ferent number of descriptors from the total of 23 calculated de-
scriptors using different kernel functions. The performances of 
polynomial kernel function and RBF kernel function were more 
stable than the other generated models. But the model of linear 
kernel function had a good performance in the case of using 
few descriptors. 

SVM performance
In this study, we trained different models using two training 
sets and performances of the best models were compared with 
each other. The performances of the developed SVM models 
were tested on two test sets. The test set 1 contained 32 inhibi-
tors and 28 non-inhibitors whereas the test set 2 contained 20 
inhibitors and 20 non-inhibitors. On these two test sets, the best 
model obtained has shown 75% of accuracy, the other kernel 

functions have also displayed good prediction over the test set 
compounds. But the model with 75% accuracy was developed 
with 18 descriptors, which is not acceptable from the medicinal 
chemistry point of view22. This study is focused on developing 
SVM models that can be used as simple filters in the early stage 
of drug discovery process. Thus the models classify the samples 
using high number of descriptors also were considered in this 
study. But high importance is given towards the models classi-
fying the samples with less number of descriptors. Model 4 and 
5 of training set 1 are developed with 4 and 3 descriptors, respec-
tively (Table 3). The descriptors such as HDon, Hacc, XlogP, and 
NRotBond were used in the development of model 4 and 5 (Ta-
ble 4). This explains that these descriptors are of great influence 
in classifying the HDAC8 inhibitors. The trend of decreasing 
prediction percentage with increased number of descriptors 
has shown the negative influence of other descriptors. The pro-
posed algorithm did not adjust the classification boundary in 
order to include all inhibitors into non-inhibitors class since 
this would have resulted in an unacceptably low specificity. Mo
del 5 that is generated using training set 1 (20 inhibitors and 20 
non-inhibitors) was selected as best model. In the case of low 
numbers of sample data, the effect of model of linear kernel 
function which is composed of few descriptors prevails with 
70% of accuracy, the model was made up of Hacc, Xlogp and 

Table 2. Four basic kernel function used in SVM modeling

Kernel function               Expression

Linear kernel K (xi, xj) = xi
T ∙ xj

Polynomial kernel K (xi, xj) = (γxi
T xj + r)d, γ > 0

Radial basis function (RBF) K (xi, xj) = exp (-γ||xi - xj||2), γ > 0
Sigmoid kernel function K (xi, xj) = tanh (γxi

T xj + r), γ > 0

Table 3. Comparison of the results of different SVM models generated with 
training set 1

Model Descriptors
Training set Test set Correctly 

predicted 
in (%)

Kernel 
functionInh Non-inh Inh Total

Model 1 All 23 descriptors 20 20 40 60 66.67 Polynomial
Model 2 18 descriptors 20 20 39 60 65 RBF
Model 3 10 descriptors 20 20 40 60 66.67 Polynomial
Model 4 4 descriptors 20 20 41 60 68.33 Linear
Model 5 3 descriptors 20 20 42 60 70 Linear

Inh, Inhibitor; Non-inh, Non-inhibitor.

Table 4. Descriptors used in each model

Model Descriptors

Model 1 W�eight, HDon, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NViolationsExtRo5, NAtoms, NStereo, Complexity, RComplexity, Diameter,  
InertiaX, InertiaY, InertiaZ, Span, Rgyr, Eccentric, Aspheric

Model 2 H�Don, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NViolationsExtRo5, NAtoms, NStereo, Complexity, RComplexity, Diameter, Rgyr,  
Eccentric, Aspheric

Model 3 HDon, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NAtoms
Model 4 HDon, HAcc, XlogP, NRotBond
Model 5 Hacc, Xlogp,  NRotBond
Model 6 W�eight, HDon, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NViolationsExtRo5, NAtoms, NStereo, Complexity, RComplexity, Diameter,  

InertiaX, InertiaY, InertiaZ, Span, Rgyr, Eccentric, Aspheric
Model 7 H�Don, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NViolationsExtRo5, NAtoms, NStereo, Complexity, RComplexity, Diameter, Rgyr,  

Eccentric, Aspheric
Model 8 HDon, HAcc, XlogP, TPSA, Polariz, Dipole, LogS, NRotBond, NViolationsRo5, NAtoms
Model 9 HDon, HAcc, XlogP, NRotBond
Model 10 HAcc, Xlogp, NRotBond
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NRotBo descriptors. The prediction results are 66.67% with poly
nomial kernel function for model1, 65% with RBF kernel func-
tion for model 2, 66.67% with polynomial function for model 3, 
both model 4 and model 5 used linear kernel function, the re-
sults are 68.33% and 70%, respectively (Table 3). 
  In terms of the second set of models developed using train-
ing set 2, we observed 75% correct prediction over the test set 
using 18 descriptors with polynomial kernel function. All pre-
diction results were over 70% when polynomial kernel function 
is used (Table 5). But the predictions percentages were only 
67.5% when the RBF and linear kernel functions are used in the 
development model 9 and 10, respectively (Table 5). Models 9 
and 10 were developed with 4 and 3 descriptors, respectively, 
with 67.5% predictive ability are of high significance in terms of 
identifying the key properties classifying the HDAC8 inhibitors. 
Interestingly, these models also were developed with same set 
of descriptors, which contains HDon, Hacc, XlogP, and NRot-
Bond.
  Comparison of the models developed using two different 
training and test sets with four different kernel functions shown 
that the classification accuracy improved with the increasing 
number of training samples. The global molecular descriptors 
are more relevant than the size and shape descriptors in the pre
diction results of the developed models.

CONCLUSION AND PROSPECTS

The focus of this study was to evaluate the performance of SVMs 
in classification problems. The SVM has been widely applied to 
various fields, especially drug discovery. The developed models 
in this work can be used as simple filters in the HDAC 8 inhibi-
tors discovery process. Selecting relevant descriptors is both 
important and difficult for any machine learning method. In 
this study, a set of molecular descriptors was calculated for all 
compounds in the dataset using ADRIANA.Code of Molecular 
Networks Inc. And the results showed that these descriptors 
can effectively be used in drug design. The developed models 
of high accuracy such as model 5, 6, and 7 using support vector 
machine with different kernel functions are suitable to classify 

HDAC8 inhibitors from non-inhibitors. Three global molecular 
descriptors such as HDon, HAcc, and NRotBond along with 
XlogP were the influencing factors in the classification using 
SVM models. This explains both the hydrophilic and hydropho-
bic nature of the HDAC8 inhibitors detailing the polar nature of 
the hydroxamic acid moiety and the hydrophobic nature of the 
tunnel binding and surface binding moieties. Thus the devel-
oped models in this study could effectively classify HDAC8 in-
hibitors and non inhibitors with high correlation.

MATERIALS AND METHODS

Collection of data set
A total of more than 500 compounds were collected from vari-
ous literature resources including patents. Among these, 100 
compounds with HDAC8 inhibitory activity values predicted 
under same biological assay conditions were selected to be used 
in SVM model development and validation. This data set has 
included 52 inhibitors and 48 non-inhibitor compounds, which 
was done based on IC50 values of the compounds. Based on their 
IC50 values, this data set was finally divided into two different 
training and test sets. Training set 1 is comprised of 40 compo
unds including 20 inhibitors and 20 non-inhibitors. Training 
set 2 was made of 60 compounds including 32 inhibitors and 28 
non-inhibitors. Both the training sets were diverse in terms of 
chemical diversity and biological activity ranging from 0.008 to 
35 µM. 

Preparation of compounds and descriptor calculation
Various set of molecular descriptors are available currently. The 
molecular descriptor is the final result of a logical and mathe-
matical procedure which transforms chemical information en-
coded within a symbolic representation of a molecule into an 
useful number or the result of some standardized experiment23. 
In this study, 23 molecular descriptors including 2D and 3D de-
scriptors were calculated using ADRIANA.Code program avail-
able from Molecular Networks Inc. These 23 descriptors from 
ADRIANA.Code included various physicochemical properties 
such as global descriptors, shape and size-related descriptors 
(Table 6).

Support Vector Machine (SVM)
The SVM is a set of related supervised learning methods that 
analyze data and recognize patterns. To understand how a SVM 
classifier works, first think of the task of separating two classes 
of points in space. The SVM classification task can be separated 
into two kinds of cases, namely, linearly separable cases and 
non-separable cases. If two classes are linearly separable, the 
classifier can define optimal separating hyperplanes for their 
separation easily (Figure 2A). If the sample vectors are overlap, 

Table 5. Comparison of the results of different SVM models generated with 
training set 2

Model Descriptors
Training set Test set Correctly 

predicted 
in (%)

Kernel 
functionInh Non-inh Inh Total

Model 6 All 23 descriptors 30 30 28 40 70 Polynomial
Model 7 18 descriptors 30 30 30 40 75 Polynomial
Model 8 10 descriptors 30 30 23 40 57.5 RBF
Model 9 4 descriptors 30 30 27 40 67.5 Linear
Model 10 3 descriptors 30 30 27 40 67.5 Linear

Inh, Inhibitor; Non-inh, Non-inhibitor.
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classifier needs to generate nonlinear boundaries to separate 
them (Figure 2B). In short, the whole process of SVM classifica-
tion can be summarized as a two-step procedure: First, the sam-
ple data vectors (descriptors of compounds) are mapped to a 
very high-dimensional feature space by kernel function. The 

dimension of this space is significantly larger than dimension 
of the original data space (Figure 3). It is not practical to use di-
rectly the feature function in computing the classification hy-
perplane. Instead, the nonlinear mapping induced by the fea-
ture functions is computed with special nonlinear functions 

A BLinearly separable example Linearly non-separable example

Figure 2. Two cases of SVM classification. (A) A linear separable case, the sample data are separated by linear kernel function. (B) A non-linear separable case, the 
sample data separated by polynomial kernel function, degree = 3.

Table 6. The molecular descriptors used in generating SVM models

Descriptor Name Description Abbreviation Type of descriptors

Lecular weight Molecular weight in [u] or [Da] derived from the gross formula Weight Global molecular descriptors
N�umber of hydrogen bonding acceptors N�umber of hydrogen bonding acceptors derived from the sum of nitrogen 

and oxygen atoms in the molecule
HAcc Global molecular descriptors

Number of hydrogen bonding donors N�umber of hydrogen bonding donors derived from the sum of N-H and  
O-H groups in the molecule

HDon Global molecular descriptors

O�ctanol/water partition coefficient (logP) O�ctanol/water partition coefficient in [log units] of the molecule following 
the XlogP approach

XlogP Global molecular descriptors

Topological polar surface area T�opological polar surface area in [Å2] of the molecule derived from polar 
2D fragments

TPSA Global molecular descriptors

Mean molecular polarizability Mean molecular polarizability in [Å3] of the molecule Polariz Global molecular descriptors
Molecular dipole moment Dipole moment in [Debye] of the molecule Dipole Global molecular descriptors
Aqueous solubility (logS) Solubility of the molecule in water in [log units] LogS Global molecular descriptors
Number of rotatable bonds Number of open-chain, single rotatable bonds NRotBond Global molecular descriptors
Number of Ro5 violations N�umber of violations of the Lipinski’s rule of 5 (Weight > 500, XlogP > 5, 

HDon > 5, HAcc > 10)
NViolationsRo5 Global molecular descriptors

Number of extended Ro5 violations N�umber of violations of the extended Lipinski’s rule of 5 (additional rule:  
number of rotatable bonds > 10)

NViolationsEx-
tRo5

Global molecular descriptors

Number of atoms Number of all atoms in the molecule (including hydrogen atoms) NAtoms Global molecular descriptors
Number of tetrahedral stereocenters Number of tetrahedral chiral centers in the molecule NStereo Global molecular descriptors
Molecular complexity Molecular complexity according to the approach by J. Hendrickson Complexity Global molecular descriptors
Ring complexity Ring complexity according to the approach by J. Gasteiger and C. Jochum RComplexity Global molecular descriptors
Molecular diameter Maximum distance between two atoms in the molecule in [Å] Diameter Size and shape descriptors
Principal moment of inertia of 1st principal axis Principal component of the inertia tensor in xdirection in [Da∙Å2] InertiaX Size and shape descriptors
Principal moment of inertia of 2nd principal axis Principal component of the inertia tensor in ydirection in [Da∙Å²] InertiaY Size and shape descriptors
Principal moment of inertia of 3rd principal axis Principal component of the inertia tensor in zdirection in [Da∙Å²] InertiaZ Size and shape descriptors
Molecular span R�adius of the smallest sphere centered at the center of mass which  

completely encloses all atoms in the molecule in [Å]
Span Size and shape descriptors

Molecular radius of gyration Radius of gyration in [Å] Rgyr Size and shape descriptors
Molecular eccentricity Molecular eccentricity Eccentric Size and shape descriptors
Molecular asphericity Molecular asphericity Aspheric Size and shape descriptors
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called kernels. Second, the classifier finds a hyperplane with 
the largest margin in this high-dimensional feature space with 
the largest margin separating classes of data. Sometimes it is 
not possible to find the hyperlane in high-dimensional feature 
space, so a tradeoff is introduced between the size of the sepa-
rating margin and penalties for every vector which is within the 
margin3,4. The basic theory of SVM is briefly reviewed below: 

  The training data is defined as:
D = {(x1, y1), (x2, y2), ……, (xn, yn)}, x ∈Rn, y ∈{-1,1} 

  The separating hyperplane is defined as:
D(x) = (w ∙x)+b

  Here x is a sample vector mapped to a high dimensional space, 
y is the class label of x, and w and b are parameter of the hyper-
plane that SVM classifier will estimate. A separating hyperplane 
in canonical form must satisfy the following constraints:

yi [(w, xi)+b] ≥ |w| τ, i = 1, 2,……, n

  The distance d(w, b, x) of a point x from the hyperplane (w, b) 
is: 

d(w, b, x) = |w, xi +b|/||w||

  The margin can be expressed as a minimal τ, without loss of 
generality it applies a constraint |w| τ = 1 to w, SVM training is 
becoming the problem finding the minimum of a function with 
the following constraints:

η(w) = 1/2 ||w||2

subject to constraints yi [(w, xi)+b] ≥ 1

  This problem is solved by Lagrange multipliers and minimi-
zation of the function:

Φ(w, b, α) = 1/2 ||w||2-∑i = 1
n αi {yi [(w, xi)+b]-1}

  Here αi are Lagrange multipliers. Differentiating over w and xi 
and substituting:

max Φ(α) = ∑i = 1
n αi -1/2 ∑i = 1

n αi αj yi yj (xi ∙ xj)
subject to constraints ∑i = 1

n yi αi = 0, αi ≥ 0, i = 1,……, n

  SVM introduced slack variable to solve the case that cannot 
be separate perfectly.

minimize η(w) = 1/2 ||w||2 + C ∑i ξi

subject to constraints yi [(w ∙ xi) + b] ≥ 1-ξi

  The ξi are slack variables, C is the error tradeoff parameter. 
The Lagrange multipliers can be obtained finally: 

max Φ(α) = ∑i = 1
n αi - 1/2 ∑i = 1

n αi αj yi yj (xi ∙ xj)
subject to constraints ∑i = 1

n yi αi = 0, C ≥ αi ≥ 0, i = 1,……, n

  The freely available SVM software named LIBSVM (available 
at http://www.csie.ntu.edu.tw/~cjlin/libsvm) was used in gen-
erating SVM models24. Numbers of SVM models using different 
kernel functions were generated to accurately classify the train-
ing set compounds. The test compounds were used to validate 
the generated SVM models for their ability in classifying the ex-
ternal compounds that are not used in model generation.
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