Defect Diagnostics of Gas Turbine Engine with Mach Number and Fuel Flow Variations Using Hybrid SVM-ANN

SVM과 인공신경망을 이용한 속도 및 연료유량 변화에 따른 가스터빈 엔진의 결함 진단 연구

  • 최원준 (인하대학교 항공공학과) ;
  • 이상명 (인하대학교 항공공학과) ;
  • 노태성 (인하대학교 항공우주공학과) ;
  • 최동환 (인하대학교 항공우주공학과)
  • Published : 2006.11.09

Abstract

In this paper, the hybrid algorithm of Support Vector Machine md Artificial Neural Network is used for the defect diagnostics algorithm for the aircraft turbo-shaft engine. The results of learning of ANN, especially, accuracy or speed of convergence are sensitive to the number of data, so a comparison between design point and off-design area, especially, Mach number and fuel flow variable area, is essential research. From application results for diagnostics of gas turbine engine, it was confirmed that the hybrid algorithm could detect well in the of-design area as well as design point.

본 논문에서는 항공기용 터보 축 엔진의 결함진단 알고리즘으로 지지 벡터 장치(Support Vector Machine) 과 인공신경망(Artificial Neural Network) 을 복합으로 이용하였다. 인공신경망 알고리즘의 특성상 데이터 수에 따라 정확성과 수렴속도 등에서 차이가 나므로 탈설계 영역에서의 효용성여부를 판단하기 위해서 연료유량과 마하수에 따른 탈설계 영역 진단 결과를 지상정지 상태와 비교하였다.

Keywords