• 제목/요약/키워드: supplementary cementitious materials (SCM)

검색결과 15건 처리시간 0.025초

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계 (Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete)

  • 양근혁;문재흠
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.597-604
    • /
    • 2012
  • 이 연구에서는 2464개의 시멘트 콘크리트 배합과 776개의 혼화재가 치환된 혼합 시멘트 콘크리트 배합을 포함하는 실험 데이터베이스를 이용하여 콘크리트 압축강도 및 혼화재 치환율에 따른 콘크리트 $CO_2$ 배출량을 평가하였다. 국내 생애주기 데이터 목록에 기반한 콘크리트 $CO_2$ 평가에서 고려된 시스템은 요람에서 현장 콘크리트 타설 전까지로서 구성재료, 운반 및 생산단계를 포함하고 있다. 콘크리트의 성능 효율성 지표로서 결합재 지수와 $CO_2$ 지수가 분석되었으며, 콘크리트 $CO_2$ 배출량을 평가하기 위한 단순 식이 각 혼화재의 치환비 및 콘크리트 압축강도의 함수로서 제시되었다. 따라서 이 제안된 모델은 목표 압축강도 및 목표 시멘트 콘크리트 대비 $CO_2$ 배출 저감율을 만족하는 콘크리트 배합설계를 위하여 단위 결합재 양 및 혼화재 종류와 치환비를 결정하는 데 가이드 라인으로서 유용하게 이용될 수 있을 것으로 기대된다.

Waste glass powder and its effect on the fresh and mechanical properties of concrete: A state of the art review

  • He, Zhi-hai;Yang, Ying;Zeng, Hao;Chang, Jing-yu;Shi, Jin-yan;Liu, Bao-ju
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.417-429
    • /
    • 2020
  • Waste glass is a global solid waste with huge reserves. The discarded waste glass has caused a series of problems such as resource waste and environmental pollution, so it is urgent to recycle waste glass with high replacement level. Glass powder (GP), as a supplementary cementitious material (SCM), used in cement-based materials has already become one of the important ways to recycle waste glass mainly attributed to its pozzolanic reaction and filling effect, especially to the suppressed ASR expansion. This paper demonstrates an overview of the properties of GP and its effect on the fresh and mechanical properties of cement-based materials. The study found that the influence of GP on the performance of cement-based materials mainly depends on its content, particle size, color and type, curing conditions, and other SCMs. Finally, based on the problems involved in the investigation of concrete containing GP, some corresponding suggestions and efforts are given to further guide the utilization of GP in cement-based materials.

ASR Resistance of Ternary Cementitious Systems Containing Silica Fume-Fly Ash Using Modified ASTM C 1260 Method

  • Shon, Chang-Seon;Kim, Young-Su;Jeong, Jae-Dong
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.497-503
    • /
    • 2003
  • Supplementary cementitious materials (SCM) such as fly ash, ground granulated blast furnace slag and silica fume are now being extensively used in concrete to control expansion due to alkali-silica reactivity (ASR). However, the replacement level of a single SCM needed to deleterious ASR expansion and cracking may create other problem and concerns. For example, incorporating silica fume at levels greater than 10% by mass of cement may lead to dispersion and workability concerns, while fly ash can lead to poor strength development at early age, The combination of silica fume and fly ash in ternary cementitious system may alleviate this and other concerns, and result in a number of synergistic effects. The aim of the study was to enable evaluation of more realistic suitability of a silica fume-fly ash combination system for ASR resistance based on an in-house modification of ASTM C 1260 test method. The modification can be more closely identified with actual field conditions. In this study three different strengths of NaOH test solution(1N, 0.5N, and 0.25N) were used to measure the expansion characteristics of mortar bar made with a reactive aggregate. The other variable included longer testing period of 28 days instead of a conventional 14 days.

혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델 (Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials)

  • 문재성;양근혁;전용수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권6호
    • /
    • pp.82-89
    • /
    • 2014
  • 이 연구의 목적은 다양한 혼화재의 치환과 양생온도를 고려한 콘크리트의 압축강도 발현을 평가할 수 있는 단순모델의 제시이다. 이를 위해 ACI 209의 포물선 식을 성숙도 함수를 기반으로 하여 수정하였으며, 압축강도 발현 상수 A, B 그리고 재령 28일 압축강도는 264개의 기존 실험결과들의 회귀분석으로부터 결정하였다. 제시된 모델의 검증을 위하여 혼화재 치환과 양생온도를 변수로 3그룹의 실험을 수행하였다. 콘크리트의 28일 압축강도는 양생온도가 표준양생온도(20도시)보다 높을수록 또는 낮을수록 감소하였다. 초기 재령3일동안 표준온도에서 양생을 한 콘크리트의 압축강도 발현은 그 이후 양생온도 변화에 영향을 거의 받지 않았다. 제안된 모델의 예측값과 실험값의 비의 평균과 표준편차는 각각 1.00와 0.08로서 실험결과와 잘 일치하였다.

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델 (Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials)

  • 정연백;양근혁
    • 콘크리트학회논문집
    • /
    • 제27권4호
    • /
    • pp.427-434
    • /
    • 2015
  • 이 연구의 목적은 다양한 혼화재를 기반으로 목표 $CO_2$ 저감율 뿐만 아니라 콘크리트 초기 슬럼프, 공기량 및 28일 압축강도와 같은 종래의 요구 사항을 만족하는 $CO_2$ 저감 콘크리트의 합리적인 배합 설계 절차를 확립하는 것이다. $CO_2$ 배출과 콘크리트의 압축강도에 혼화재가 미치는 영향을 평가하기 위해, 실내 배합 및 레미콘 공장 데이터(전체 12537 배합표)를 분석하였다. 콘크리트의 배합에 따른 $CO_2$ 배출량 평가를 위해 고려된 시스템 경계는 재료 채취 및 가공에서부터 레미콘 공장에서 콘크리트 생산단계까지이다. 구축된 12537 콘크리트 배합 데이터를 사용한 비선형 회귀 분석을 통해 혼화재의 종류 및 치환율, W/B, S/a와 같은 콘크리트 배합 설계를 결정할 수 있는 간단한 모델식을 제시하였다. 또한, 주어진 콘크리트 배합에 대한 $CO_2$ 배출량은 제안된 모델식을 이용하여 직접 계산 될 수 있다. 결국, 개발된 배합 설계 절차는 레미콘 분야에서 $CO_2$ 저감 콘크리트의 초기배합표를 결정하는데 효율적으로 이용될 수 있다.

혼화재 다량치환 상태에서 FA 및 BS의 혼합비율에 따른 모르타르의 품질특성 (Performance Characteristics of Mortar with High Volume SCM Depending on Combinations of FA and BS)

  • 김민상;송원루;박성배;한동엽;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.126-127
    • /
    • 2016
  • In this research, the optimum combination of fly ash (FA) and blast furnace slag (BS) was deduced by analyzing the performance of high volume supplementary cementitious materials (SCMs) cement mortar depending on various combinations of cement, FA, and BS. As a result, increased workability was shown with increased the portion of FA, while air content, setting time, and compressive strength were decreased.

  • PDF

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

캐나다 시멘트 및 콘크리트의 내구성 및 제성능에 대한 규준 (Durability and Performance Requirements in Canadian Cement and Concrete Standards)

  • Hooton, R.D.
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.5-21
    • /
    • 2006
  • Traditional standards and specifications for concrete have largely been prescriptive, (or prescription-based), and can sometimes hinder innovation and in particular the use of more environmentally friendly concretes by requiring minimum cement contents and SCM replacement levels. In December 2004, the Canadian CSA A23.1-04 standard was issued which made provisions (a) for high-volume SCM concretes, (b) added new performance requirements for concrete, and (c) clearly outlined the requirements and responsibilities for use in performance-based concrete specifications. Also, in December 2003, the CSA A3000 Hydraulic Cement standard was revised. It (a) reclassified the types of cements based on performance requirements, with both Portland and blended cements meeting the same physical requirements, (b) allows the use of performance testing for assessing sulphate resistance of cementitious materials combinations, (c) includes an Annex D, which allows performance testing of new or non-traditional supplementary cementing materials. From a review of international concrete standards, it was found that one of the main concerns with performance specifications has been the lack of tests, or lack of confidence in existing tests, for judging all relevant performance concerns. Of currently used or available test methods for both fresh, hardened physical, and durability properties, it was found that although there may be no ideal testing solutions, there are a number of practical and useful tests available. Some of these were adopted in CSA A23.1-04, and it is likely that new performance tests will be added in future revisions. Other concerns with performance standards are the different perspectives on the point of testing for performance. Some concrete suppliers may prefer processes for both pre-qualifying the plant, and specific mixtures, followed only with testing only 'end-of-chute' fresh properties on-site. However, owners want to know the in-place performance of the concrete, especially with high-volume SCM concretes where placing and curing are important. Also, the contractor must be aware of, and share the responsibility for handling, constructability, curing, and scheduling issues that influence the in-place concrete properties.

  • PDF