Browse > Article
http://dx.doi.org/10.12989/acc.2020.9.3.279

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout  

Zhou, Yao (School of Engineering and Technology, China University of Geosciences (Beijing))
Wang, Gui H. (School of Engineering and Technology, China University of Geosciences (Beijing))
Chang, Yong H. (School of Engineering and Technology, China University of Geosciences (Beijing))
Publication Information
Advances in concrete construction / v.9, no.3, 2020 , pp. 279-287 More about this Journal
Abstract
This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.
Keywords
cement-sodium silicate grout; bentonite; supplementary cementitious materials; global warming; engineering behavior;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Kaminskas, R., Cesnauskas, V. and Kubiliute, R. (2015), "Influence of different artificial additives on Portland cement hydration and hardening", Constr. Build. Mater., 95, 537-544. https://doi.org/10.1016/j.conbuildmat.2015.07.113.   DOI
2 Liu, Y. and Chen, B. (2019), "Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement", Constr. Build. Mater., 214, 516-526.   DOI
3 Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.   DOI
4 Man, X., Aminul Haque, M. and Chen, B. (2019), "Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay", Constr. Build. Mater., 227, 116656. https://doi.org/10.1016/j.conbuildmat.2019.08.037.   DOI
5 Martin, S., Lepaumier, H., Picq, D., Kittel, J., de Bruin, T., Faraj, A. and Carrette, P.L. (2012), "New amines for $CO_2$ capture. IV. degradation, corrosion, and quantitative structure property relationship model", Indus. Eng. Chem. Res., 51(18), 6283-6289. https://doi.org/10.1021/ie2029877.   DOI
6 Massoussi, N., Keita, E. and Roussel, N. (2017), "The heterogeneous nature of bleeding in cement pastes", Cement Concrete Res., 95, 108-116. https://doi.org/10.1016/j.cemconres.2017.02.012.   DOI
7 Nas, M. and Kurbetci, S. (2018), "Durability properties of concrete containing metakaolin", Adv. Concrete Constr., 6(2), 159-175. https://doi.org/10.12989/acc.2018.6.2.159.   DOI
8 Paliwal, G. and Marua, S. (2017), "Effect of fly ash and plastic waste on mechanical and durability properties of concrete", Adv. Concrete Constr., 5(6), 575-586. https://doi.org/10.12989/acc.2017.5.6.575.   DOI
9 Li, S., Sha, F., Liu, R., Zhang, Q. and Li, Z. (2017), "Investigation on fundamental properties of microfine cement and cement-slag grouts", Constr. Build. Mater., 153, 965-974. https://doi.org/10.1016/j.conbuildmat.2017.05.188.   DOI
10 Koch, D. (2002), "Bentonites as a basic material for technical base liners and site encapsulation cut-off walls", Appl. Clay Sci., 21(1-2), 1-11. https://doi.org/10.1016/S0169-1317(01)00087-4.   DOI
11 Li, S., Zhang, J., Li, Z., Gao, Y., Qi, Y., Li, H. and Zhang, Q. (2019), "Investigation and practical application of a new cementitious anti-washout grouting material", Constr. Build. Mater., 224, 66-77. https://doi.org/10.1016/j.conbuildmat.2019.07.057.   DOI
12 Liu, D., Edraki, M. and Berry, L. (2018), "Investigating the settling behaviour of saline tailing suspensions using kaolinite, bentonite, and illite clay minerals", Powder Technol., 326, 228-236. https://doi.org/10.1016/j.powtec.2017.11.070.   DOI
13 Acevedo-Martinez, E., Gomez-Zamorano, L.Y. and Escalante-Garcia, J.I. (2012), "Portland cement-blast furnace slag mortars activated using waterglass: Part 1: Effect of slag replacement and alkali concentration", Constr. Build. Mater., 37, 462-469. https://doi.org/10.1016/j.conbuildmat.2012.07.041.   DOI
14 Scrivener, K.L. and Nonat, A. (2011), "Hydration of cementitious materials, present and future", Cement Concrete Res., 41(7), 651-665. https://doi.org/10.1016/j.cemconres.2011.03.026.   DOI
15 Pantazopoulos, I.A., Markou, I.N., Christodoulou, D.N., Droudakis, A.I., Atmatzidis, D.K., Antiohos, S.K. and Chaniotakis, E. (2012), "Development of microfine cement grouts by pulverizing ordinary cements", Cement Concrete Compos., 34(5), 593-603. https://doi.org/10.1016/j.cemconcomp.2012.01.009.   DOI
16 Petra, R.K. and Mukharjee, B.B. (2018), "Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar", Adv. Concrete Constr., 6(6), 611-629. https://doi.org/10.12989/acc.2018.6.6.611.   DOI
17 Pusch, R. (2015), Bentonite Clay: Environmental Properties and Applications, CRC Press, Taylor & Francis Group, Boca Raton London, New York.
18 Sha, F., Li, S.C., Liu, R.T., Li, Z.F. and Zhang, Q.S. (2018), "Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass", Constr. Build. Mater., 161, 282-291. https://doi.org/10.1016/j.conbuildmat.2017.11.034.   DOI
19 Al-Amoudi, O.S.B., Ahmed, S., Khan, S.M.S. and Maslehuddin, M. (2019), "Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material", Adv. Concrete Constr., 8(2), 119-126. https://doi.org/10.12989/acc.2019.8.2.119.   DOI
20 Kazemian, S., Prasad, A., Huat, B.B.K., Bazaz, J.B., Aziz, F.N. A.A. and Ali, T.A.M. (2011), "Influence of cement - sodium silicate grout admixed with calcium chloride and kaolinite on sapric peat", J. Civil Eng. Manage., 17(3), 309-318. https://doi.org/10.3846/13923730.2011.589209.   DOI
21 Alexander, J.A., Ahmad Zaini, M.A., Surajudeen, A., Aliyu, E.N.U. and Omeiza, A.U. (2018), "Surface modification of low-cost bentonite adsorbents-A review", Particul. Sci. Technol., 37(5), 534-545. https://doi.org/10.1080/02726351.2018.1438548.
22 Andrejkovicova, S., Alves, C., Velosa, A. and Rocha, F. (2015), "Bentonite as a natural additive for lime and lime-metakaolin mortars used for restoration of adobe buildings", Cement Concrete Compos., 60, 99-110. https://doi.org/10.1016/j.cemconcomp.2015.04.005.   DOI
23 Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb $CO_2$ emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.   DOI
24 Shabab, M.E., Shahzada, K., Gencturk, B., Ashraf, M. and Fahad, M. (2015), "Synergistic effect of fly ash and bentonite as partial replacement of cement in mass concrete", KSCE J. Civil Eng., 20(5), 1987-1995. https://doi.org/10.1007/s12205-015-0166-x.   DOI
25 Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.   DOI
26 Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna, I., ... & Nowicki, S. (2018), "Mass balance of the antarctic ice sheet from 1992 to 2017", Nature, 558(7709), 219-222. https://doi.org/10.1038/s41586-018-0179-y.   DOI
27 Khaheshi, S., Riahi, S., Mohammadi-Khanaposhtani, M. and shokrollahzadeh, H. (2019), "Prediction of amines capacity for carbon dioxide absorption based on structural characteristics", Indus. Eng. Chem. Res., 58, 8763-8771. https://doi.org/10.1021/acs.iecr.9b00567.   DOI
28 Ata, A.A., Salem, T.N. and Elkhawas, N.M. (2015), "Properties of soil-bentonite-cement bypass mixture for cutoff walls", Constr. Build. Mater., 93, 950-956. https://doi.org/10.1016/j.conbuildmat.2015.05.064.   DOI
29 Azadi, M.R., Taghichian, A. and Taheri, A. (2017), "Optimization of cement-based grouts using chemical additives", J. Rock Mech. Geotech. Eng., 9(4), 623-637. https://doi.org/10.1016/j.jrmge.2016.11.013.   DOI
30 Baquerizo, L.G., Matschei, T., Scrivener, K.L., Saeidpour, M. and Wadso, L. (2015), "Hydration states of AFm cement phases", Cement Concrete Res. 73, 143-157. https://doi.org/10.1016/j.cemconres.2015.02.011.   DOI
31 Sunil, B.M., Manjunatha, L.S. and Yaragal, S.C. (2017), "Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material", Adv. Concrete Constr., 5(6), 671-683. https://doi.org/10.12989/acc.2017.5.6.671.   DOI
32 Shepherd, A., Gilbert, L., Muir, A.S., Konrad, H., McMillan, M., Slater, T., Briggs, K.H., Sundal, A.V., Hogg, A.E. and Engdahl, M.E. (2019), "Trends in antarctic ice sheet elevation and mass", Geophys. Res. Lett., 46(14), 8174-8183. https://doi.org/10.1029/2019gl082182.   DOI
33 Shi, C., Jimenez, A.F. and Palomo, A. (2011), "New cements for the 21st century: The pursuit of an alternative to Portland cement", Cement Concrete Res., 41(7), 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016.   DOI
34 Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media, Springer, Heidelberg, Dordrecht, London, New York, UK.
35 Bronselaer, B., Winton, M., Griffies, S.M., Hurlin, W.J., Rodgers, K.B., Sergienko, O.V., Stouffer, R.J. and Russell, J.L. (2018), "Change in future climate due to Antarctic meltwater", Nature, 564(7734), 53-58. https://doi.org/10.1038/s41586-018-0712-z.   DOI
36 Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5.   DOI
37 Benyahia, A. and Ghrici, M. (2018), "Behaviour of self compacting repair mortars based on natural pozzolana in hot climate", Adv. Concrete Constr., 6(3), 285-296. https://doi.org/10.12989/acc.2018.6.3.285.   DOI
38 Bohac, M., Palou, M., Novotny, R., Masilko, J., Všiansky, D. and Stanek, T. (2014), "Investigation on early hydration of ternary Portland cement-blast-furnace slag-metakaolin blends", Constr. Build. Mater., 64, 333-341. https://doi.org/10.1016/j.conbuildmat.2014.04.018.   DOI
39 Viktor, S. and Galyna, K. (2017), "Effect of water glass on early hardening of portland cement", Procedia Eng., 172, 977-981. https://doi.org/10.1016/j.proeng.2017.02.119.   DOI
40 Thomas, M. (2013), Supplementary Cementing Materials In Concrete, CRC Press, Boca Raton, London, New York, UK.
41 Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., Dutt, N.V.K. and Rani, K.Y. (2007), Viscosity Of Liquids, Springer, Netherlands.
42 Wang, J., Qian, C., Qu, J. and Guo, J. (2018), "Effect of lithium salt and nano nucleating agent on early hydration of cement based materials", Constr. Build. Mater. 174, 24-29. https://doi.org/10.1016/j.conbuildmat.2018.04.073.   DOI
43 Wang, S., Wang, J.F., Yuan, C.P., Chen, L.Y., Xu, S.T. and Guo, K.B. (2019), "Development of the nano-composite cement: Application in regulating grouting in complex ground conditions", J. Mountain Sci., 15(7), 1572-1584. https://doi.org/10.1007/s11629-017-4729-9.
44 Deng, Y.H., Zhang, C.Q., Shao, H.Q., Wu, H. and Xie, N.Q. (2014), "Effects of different lithium admixtures on ordinary portland cement paste properties", Adv. Mater. Res., 919-921, 1780-1789. https://doi.org/10.4028/www.scientific.net/AMR.919-921.1780.   DOI
45 Celik, F. and Canakci, H. (2015), "An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA)", Constr. Build. Mater., 91, 187-194. https://doi.org/10.1016/j.conbuildmat.2015.05.025.   DOI
46 WBCSD/IEA (2009), Cement Technology Roadmap 2009 : Carbon Emissions Reductions up to 2050, World Business Council for Sustainable Development/International Energy Agency (WBCSD/IEA), Paris, France.
47 Wong, L.S., Hashim, R. and Ali, F. (2013), "Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat", Eng. Geol., 152(1), 56-66. https://doi.org/10.1016/j.enggeo.2012.10.019.   DOI
48 Xu, D., Cui, Y.S., Li, H., Yang, K., Xu, W. and Chen, Y.X. (2015), "On the future of Chinese cement industry", Cement Concrete Res. 78, 2-13. https://doi.org/10.1016/j.cemconres.2015.06.012.   DOI
49 Xu, J.H., Fleiter, T., Eichhammer, W. and Fan, Y. (2012), "Energy consumption and $CO_2$ emissions in China's cement industry: A perspective from LMDI decomposition analysis", Energy Policy, 50, 821-832. https://doi.org/10.1016/j.enpol.2012.08.038.   DOI
50 David, G., Mark, S.S., Owen, G., Johan, R.M., Ohman, M.C., Priya, S., Will, S., Gisbert, G., Norichika, K. and Ian, N. (2013), "Policy: Sustainable development goals for people and planet", Nature, 495, 305307. https://doi.org/10.1038/495305a.
51 Dickens, W.A., Kuhn, G., Leng, M.J., Graham, A.G.C., Dowdeswell, J.A., Meredith, M.P., Hillenbrand, C.D., Hodgson, D.A., Roberts, S.J., Sloane, H. and Smith, J.A. (2019), "Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode", Sci. Rep., 9(1), 14606. https://doi.org/10.1038/s41598-019-50897-4.   DOI
52 Drochytka, R. and Magdalena, K. (2017), "Options for the remediation of embankment dams using suitable types of alternative raw materials", Constr. Build. Mater., 143, 649-658. https://doi.org/10.1016/j.conbuildmat.2017.02.089.   DOI
53 Essington, M.E. (2003), Soil and Water Chemistry: An Intergrative Approach, CRC Press, Boca Raton, London, New York Washington, D.C, USA.
54 Feng, X.Z., Lugovoy, O. and Qin, H. (2018), "Co-controlling CO2 and NOx emission in China's cement industry: An optimal development pathway study", Adv. Climate Change Res., 9(1), 34-42. https://doi.org/10.1016/j.accre.2018.02.004.   DOI
55 GB/T 17671 (1999), Method of Testing Cements-Determination of Strength China Institute of Standardization, B.J., China.
56 Zhao, N., Wang, S., Quan, X. and Wang, C. (2019), "Study on the coupled effects of bentonite and high-volume fly ash on mechanical properties and microstructure of engineered cementitious composites (ECC)", KSCE J. Civil Eng., 23(6), 2628-2635. https://doi.org/10.1007/s12205-019-2102-y.   DOI
57 Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2015), "Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete", J. Clean. Prod., 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018.   DOI
58 Ye, W.M., He, Y., Chen, Y.G., Chen, B. and Cui, Y.J. (2016), "Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository", Environ. Earth Sci., 75(10), https://doi.org/10.1007/s12665-016-5716-0.
59 Zhang, J., Liu, L., Zhang, F. and Cao, J. (2018), "Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine", Sci. Rep., 8(1), 5642. https://doi.org/10.1038/s41598-018-23995-y.   DOI
60 Zhou, Z., Zang, H., Wang, S., Du, X., Ma, D. and Zhang, J. (2018), "Filtration behaviour of cement-based grout in porous media", Tran. Porous Media, 125(3), 435-463. https://doi.org/10.1007/s11242-018-1127-x.   DOI
61 Huang, W., Leong, Y.K., Chen, T., Au, P.I., Liu, X. and Qiu, Z. (2016), "Surface chemistry and rheological properties of API bentonite drilling fluid: pH effect, yield stress, zeta potential and ageing behaviour", J. Petrol. Sci. Eng., 146, 561-569. https://doi.org/10.1016/j.petrol.2016.07.016.   DOI
62 GB/T 5005 (2010), Specifications of Drilling Fluid Materials: Petroleum and Natural Gas Industries-Drilling Fluid Materials-Specifications and Tests, 75.020, China Institute of Standardization, B.J., China.
63 Gunister, E., Alemdar, S.A. and Gungor, N. (2004), "Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions", Bull. Mater. Sci., 27(3), 317-322. https://doi.org/10.1007/bf02708522.   DOI
64 He, Z., Li, Q., Wang, J., Ning, Y., Shuai, J. and Kang, M. (2016), "Effect of silane treatment on the mechanical properties of polyurethane/water glass grouting materials", Constr. Build. Mater., 116, 110-120. https://doi.org/10.1016/j.conbuildmat.2016.04.112.   DOI
65 Huntzinger, D.N. and Eatmon, T.D. (2009), "A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies", J. Cleaner Prod., 17(7), 668-675. https://doi.org/10.1016/j.jclepro.2008.04.007.   DOI
66 Imam, A., Kumar, V. and Srivastava, V. (2018), "Review study towards effect of Silica Fume on the fresh and hardened properties of concrete", Adv. Concrete Constr., 6(2), 145-157. https://doi.org/10.12989/acc.2018.6.2.145.   DOI
67 Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018.   DOI
68 Juilland, P., Gallucci, E., Flatt, R. and Scrivener, K. (2010), "Dissolution theory applied to the induction period in alite hydration", Cement Concrete Res., 40(6), 831-844. https://doi.org/10.1016/j.cemconres.2010.01.012.   DOI