DOI QR코드

DOI QR Code

혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델

Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials

  • 문재성 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 전용수 (경기대학교 일반대학원 건축공학과)
  • 투고 : 2014.05.02
  • 심사 : 2014.06.16
  • 발행 : 2014.11.30

초록

이 연구의 목적은 다양한 혼화재의 치환과 양생온도를 고려한 콘크리트의 압축강도 발현을 평가할 수 있는 단순모델의 제시이다. 이를 위해 ACI 209의 포물선 식을 성숙도 함수를 기반으로 하여 수정하였으며, 압축강도 발현 상수 A, B 그리고 재령 28일 압축강도는 264개의 기존 실험결과들의 회귀분석으로부터 결정하였다. 제시된 모델의 검증을 위하여 혼화재 치환과 양생온도를 변수로 3그룹의 실험을 수행하였다. 콘크리트의 28일 압축강도는 양생온도가 표준양생온도(20도시)보다 높을수록 또는 낮을수록 감소하였다. 초기 재령3일동안 표준온도에서 양생을 한 콘크리트의 압축강도 발현은 그 이후 양생온도 변화에 영향을 거의 받지 않았다. 제안된 모델의 예측값과 실험값의 비의 평균과 표준편차는 각각 1.00와 0.08로서 실험결과와 잘 일치하였다.

The purpose of this study is to propose a simple model to evaluate the compressive strength development of concrete with various supplementary cementitious materials (SCMs) and cured under different temperatures. For the generalization of the model, the ACI 209 parabola equation was modified based on the maturity function and then experimental constants A and B and 28-day compressive strength were determined from the regression analysis using a total of 265 data-sets compiled from the available literature. To verify the proposed model, concrete specimens classified into 3 Groups were prepared according to the SCM level as a partial replacement of cement and curing temperature. The analysis of existing data clearly revealed that the 28-day compressive strength decreases when the curing temperature is higher and/or lower than the reference curing temperature ($20^{\circ}C$). Furthermore, test results showed that the compressive strength development of concrete cured under $20^{\circ}C$ until an early age of 3 days was marginally affected by the curing temperature afterward. The proposed model accurately predicts the compressive strength development of concrete tested, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.00 and 0.08, respectively.

키워드

참고문헌

  1. ACI Committee 209 (1997), Prediction of Creep, Shrinkage and Temperatrue Effects in Concrete Structures, American Concrete Institute.
  2. ASTM C1074-11 (2011), C403, Annual Book of ASTM Standards: V. 4.02, ASTM International. 1-10.
  3. Barnett, S. J., Soutsos, M. N., Bungey, J. H., and Millard, S. G. (2007), Fast-Track Construction with Slag Cement Concrete : Adiabatic Strength Development and Strength Prediction, ACI Materials Journal, 104(4), 388-396.
  4. Bellmann, F. (2009), Acrivation of balast furnace slag by a new method, Cement and Concrete Research, 39(8), 644-650. https://doi.org/10.1016/j.cemconres.2009.05.012
  5. Carino, N. J. (1984), The Maturity Method: Theory and Application, ASTM Journal of Cement Concrete and Aggregates, 6(2), 61-73. https://doi.org/10.1520/CCA10358J
  6. Carreira, D. J., and Chu, K. H. (1985), Stress-Strain Relationship for Plain Concrete in Compression, ACI Journal, 82(6), 797-804.
  7. Comite Euro-International du Beton : CEB-FIP (1999), Structural Concrete : Textbook on Behaviour, Design and Performance, International Federation for Structural Concrete (Fib), 224.
  8. Demirboga, R., Turkmen, I., and Karakoc, M. B. (2004), Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete, Cement and Concrete Research, 34(12), 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
  9. Freiesleben Hansen, P., and Pedersen, E. J. (1977), Maturity Computer for Controlled Curing and Hardening of Concrete, Journal of the Nordic Concrete Federation, 1(1), 21-25.
  10. Lew, H. S., and Reichard, T. W. (1978), Mechanical Properties of Concrete at Early Ages, ACI Journal, 75(10), 533-542.
  11. Neville, A. M. (1996), Properties of Concrete, 4th ED., Wiley, New York, 844.
  12. Nurse, R. W. (1949), Steam Curing of Concrete, Magazine of Concrete Research, 1(2), 79-88. https://doi.org/10.1680/macr.1949.1.2.79
  13. Oh, B. H., Lee, M. G., Hong, K. O., Kim, K. S. (1996), Development of Prediction Model of Early-Age Concrete Strength by Maturity Concept, Journal of the Korea Concrete institute, 8(3), 197-207.
  14. Pinto, R. C. A., and Schindler, A. K. (2010), Unified Modeling of Setting and Strength Development, Cement and Concrete Research, 40(1), 58-65. https://doi.org/10.1016/j.cemconres.2009.08.010
  15. Plowman, J. M. (1956), Maturity and the Strength of Concrete, Magazine of Concrete Research, 8(22), 13-22. https://doi.org/10.1680/macr.1956.8.22.13
  16. Saul, A. G. A. (1951), Principles Underlying the Steam Curing of Concrete at Atmospheric Pressure, Magazine of Concrete Research, 2(6), 127-140. https://doi.org/10.1680/macr.1951.2.6.127