• 제목/요약/키워드: supersonic speed

검색결과 144건 처리시간 0.027초

저/고 충실도 기법을 이용한 그리드핀 공력 특성 예측 (Prediction of Aerodynamic Characteristics of the Grid Fins using Low/High Fidelity Methods)

  • 허기훈;남현재;임경진;이영빈
    • 한국군사과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.149-158
    • /
    • 2023
  • To predict the aerodynamic characteristics of the grid fins from subsonic to supersonic speeds, low fidelity SW as well as CFD SW were applied. VLM(Vortex Lattice Method) and SE(Shock-Expansion) method were used at subsonic and supersonic speed domain respectively for the rapid prediction of low fidelity SW. For 2 configurations of the grid fins, the CFD computations and tests using the trisonic wind tunnel were also performed to compare the results of the grid fins. The results of low fidelity SW, CFD SW and the wind tunnel tests data were agreed well each other. Through further research on the grid fins, the effective parameters of the grid fin configurations according to the speed regime will be investigated.

전산유동해석에 의한 발사체 공력 특성 예측에 관한 연구 (A Study on the Prediction of the Aerodynamic Characteristics of a Launch Vehicle Using CFD)

  • 김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 2004
  • A space launch vehicle departs the ground in a low speed, soon reaches a transonic and a supersonic speed, and then flies in a hypersonic speed into the space. Therefore, the design of a launch vehicle should include the prediction of aerodynamic characteristics for all speed regimes, ranging from subsonic to hypersonic speed. Generally, Empirical and analytical methods and wind tunnel tests are used for the prediction of aerodynamic characteristics. This research presents considerable factors for aerodynamic analysis of a launch vehicle using CFD. This investigation was conducted to determine effects of wake over the base section on the aerodynamic characteristics of a launch vehicle and also performed to determine effects of the sting which exist to support wind tunnel test model.

  • PDF

과산화수소 단일 추진제 PDE의 성능 특성에 관한 수치적 연구 (Performance Characteristics of Hydrogen Peroxide Mono Propellant PDE (Pulse Detonation Engine))

  • 조흥식;정인석;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.153-157
    • /
    • 2003
  • Supersonic and hypersonic aircrafts must pass wide range of speed to reach high speed region. But for existing engines the most efficient operating speed ranges are decided according to their flying speed, so an engine which mixes several engines like TRJ (Turbo Ramjet) and ARJ (Air Turbo Ramjet) has been planed. This mixed type engine has inefficiency that more than two engines must be installed simultaneously, but the pulse detonation engine (PDE) that uses detonation wave has a strong point that it can operate in all speed range with single engine. This paper deals with the simulation of the pulse detonation engine which uses hydrogen peroxide $(H_2O_2)$ mono propellant. Hydrogen peroxide is low-cost propellant, and it is reacted without oxidizer. Comparison between $H_2-O_2$ mixture with $H_2O_2$ mono propellant about thrust, pressure, temperature and velocity shows that $H_2O_2$ is a very useful propellant.

  • PDF

초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석 (Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정렬
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

저감속 회수장비 시험조건에 따른 초음속 시험탄 감속특성에 대한 수치해석적 연구 (Numerical Studies on the Deceleration Characteristics of Supersonic Projectile According to the Test Condition Parameters in a Soft Recovery System)

  • 송민섭;김재훈
    • 한국군사과학기술학회지
    • /
    • 제23권5호
    • /
    • pp.485-493
    • /
    • 2020
  • Numerical analyses were performed using a one-dimensional Euler equation and Godunov Harten-Lax-Van Leer(HLL) Riemann solver in order to study the deceleration characteristics of a 155 mm projectile in a soft recovery system. The soft recovery system consisting of a series of pressure tubes is a system that decelerates the test projectile fired at supersonic speed using a high-pressure gas and filled water inside. Therefore, depending on the gas pressure and the amount of water filling, the deceleration and the exit velocity of the test projectile inside the pressure tube are determined. In this paper, the deceleration characteristics of the test projectile were analyzed according to the gas pressure and water mass filled.

자동추력 제어시스템 개발 및 검증 (Development and Validation of Automatic Thrust Control System)

  • 김종섭;조인제;이동규
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.905-912
    • /
    • 2010
  • Modern version of advanced supersonic fighter have ATCS (Automatic Thrust Control System) to maximum flight safety, fuel efficiency and mission capability the integrated advanced autopilot system such as TFS (Terrain Following System), GCAS (Ground Collision Avoidance System) and AARS (Automatic Attitude Recovery System) and etc. This paper addresses the design and verification of ATCS based on advanced supersonic trainer in HILS (Hardware In the Loop Simulator) with minimum hardware modification to reduce of development cost and maintain of system reliability. The function of ATCS is consisted of target speed hold mode in UA (Up and Away) and angle of attack hold mode in PA (Power Approach). The real-time pilot evaluation reveals that pilot workload is minimized in cruise and approach flight stage by ATCS.

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구 (A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design)

  • 이영기;이재우
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

선대칭 형태에 있어서의 베이스 압력의 예측 (Prediction on The Base Pressure for An Axisymmetric Body)

  • 백두성;한영출
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF

축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구 (Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet)

  • 김용석;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF