Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator

초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석

  • 문귀원 (한국항공우주연구원) ;
  • 정인석 (서울대학교 항공우주공학과) ;
  • 최정렬 (부산대학교 항공우주공학과) ;
  • ;
  • ;
  • ;
  • Published : 2002.06.07

Abstract

A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

Keywords