• Title/Summary/Keyword: superquadratic nonlinearity

Search Result 5, Processing Time 0.021 seconds

HAMILTONIAN SYSTEM WITH THE SUPERQUADRATIC NONLINEARITY AND THE LIMIT RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.471-489
    • /
    • 2014
  • We investigate the number of the weak periodic solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We get one theorem which shows the existence of at least two weak periodic solutions for this system. We obtain this result by using variational method, critical point theory induced from the limit relative category theory.

VARIATIONAL RESULT FOR THE BIFURCATION PROBLEM OF THE HAMILTONIAN SYSTEM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1149-1167
    • /
    • 2015
  • We get a theorem which shows the existence of at least four $2{\pi}$-periodic weak solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We obtain this result by using the variational method, the critical point theory induced from the limit relative category theory.

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES

  • Timoumi, Mohsen
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.825-844
    • /
    • 2020
  • We obtain infinitely many solutions for a class of fractional Schrödinger equation, where the nonlinearity is superquadratic or involves a combination of superquadratic and subquadratic terms at infinity. By using some weaker conditions, our results extend and improve some existing results in the literature.

WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM

  • Choi, Q-Heung;Jung, Tacksun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.667-680
    • /
    • 2016
  • We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the $S^1$-invariant functions and the $S^1$-invariant linear subspaces.

SOLUTIONS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM WITH MIXED NONLINEARITIES

  • Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1585-1596
    • /
    • 2016
  • In this paper we investigate the existence of nontrivial solutions for the following fractional boundary value problem (FBVP) $$\{_tD_T^{\alpha}(_0D_t^{\alpha}u(t))={\nabla}W(t,u(t)),\;t{\in}[0,T],\\u(0)=u(T)=0,$$ where ${\alpha}{\in}(1/2,1)$, $u{\in}{\mathbb{R}}^n$, $W{\in}C^1([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ and ${\nabla}W(t,u)$ is the gradient of W(t, u) at u. The novelty of this paper is that, when the nonlinearity W(t, u) involves a combination of superquadratic and subquadratic terms, under some suitable assumptions we show that (FBVP) possesses at least two nontrivial solutions. Recent results in the literature are generalized and significantly improved.