Browse > Article
http://dx.doi.org/10.4134/JKMS.j190368

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES  

Timoumi, Mohsen (Department of Mathematics Faculty of Sciences of Monastir)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.4, 2020 , pp. 825-844 More about this Journal
Abstract
We obtain infinitely many solutions for a class of fractional Schrödinger equation, where the nonlinearity is superquadratic or involves a combination of superquadratic and subquadratic terms at infinity. By using some weaker conditions, our results extend and improve some existing results in the literature.
Keywords
Fractional $Schr{\ddot{o}}dinger$ equation; infinitely many solutions; variational methods; superlinear conditions; combined nonlinearities;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Ambrosio, Ground states for superlinear fractional Schrodinger equations in $R^N$, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 745-756. https://doi.org/10.5186/aasfm.2016.4147   DOI
2 V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations 2016 (2016), Paper No. 151, 12 pp.
3 V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrodinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 1, 127-152. https://doi.org/10.4171/RLM/797   DOI
4 P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981-1012. https://doi.org/10.1016/0362-546X(83)90115-3   DOI
5 T. Bartsch, Z. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, in: Handbook of Differential equations-Stationary Partial Differential Equations, Vol. 2, Elsevier, 2005, 1-55.
6 H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. https://doi.org/10.1007/BF00250555   DOI
7 C. Chen, Infinitely many solutions for fractional Schrodinger equations in ${\mathbb{R}}^N$, Electron. J. Differential Equations 2016 (2016), Paper No. 88, 15 pp.
8 J. Chen, X. Tang, and H. Luo, Infinitely many solutions for fractional Schrodinger-Poisson systems with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 97, 13 pp.
9 B. Cheng and X. Tang, New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math. 13 (2016), no. 5, 3373-3387. https://doi.org/10.1007/s00009-016-0691-y   DOI
10 R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
11 E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004   DOI
12 X. Du and A. Mao, Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schrodinger equations, J. Funct. Spaces 2017 (2017), Art. ID 3793872, 7 pp. https://doi.org/10.1155/2017/3793872
13 H. Jin and W. Liu, Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth, Electron. J. Differential Equations 2017 (2017), Paper No. 80, 19 pp.
14 P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. https://doi.org/10.1017/S0308210511000746   DOI
15 M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math. 62 (2009), no. 2, 198-214. https://doi.org/10.1002/cpa.20253   DOI
16 L. J. Jia, B. Ge, Y. X. Cui, and L. L. Sun, Multiplicity solutions of a class fractional Schrodinger equations, Open Math. 15 (2017), no. 1, 1010-1023. https://doi.org/10.1515/math-2017-0084   DOI
17 S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrodinger equation in ${\mathbb{R}}^N$, Appl. Math. Lett. 61 (2016), 156-162. https://doi.org/10.1016/j.aml.2016.06.001   DOI
18 N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2   DOI
19 N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108   DOI
20 M. Du and L. Tian, Infinitely many solutions of the nonlinear fractional Schrodinger equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 10, 3407-3428. https://doi.org/10.3934/dcdsb.2016104   DOI
21 C. E. Torres Ledesma, Existence and concentration of solutions for a non-linear fractional Schrodinger equation with steep potential well, Commun. Pure Appl. Anal. 15 (2016), no. 2, 535-547. https://doi.org/10.3934/cpaa.2016.15.535   DOI
22 P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https://doi.org/10.1090/cbms/065
23 S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990   DOI
24 S. Secchi, On fractional Schrodinger equations in RN without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 19-41.
25 W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. http://projecteuclid.org/euclid.cmp/1103900983   DOI
26 K. Teng, Multiple solutions for a class of fractional Schrodinger equations in ${\mathbb{R}}^N$, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008   DOI
27 H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 273-281. https://doi.org/10.1016/S1007-5704(03)00049-2   DOI
28 M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
29 P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631   DOI
30 M.-H. Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal. 74 (2011), no. 7, 2635-2646. https://doi.org/10.1016/j.na.2010.12.019   DOI
31 Y. Zhang, X. Tang, and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian equations with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 208, 14 pp.
32 H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660
33 J. Zhang, Existance and multiplicity results for the fractional Schrodinger-Poisson equations, arXiv 1507:01205v1 [Math.AP] 5 Jul 2015.
34 J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrodinger equations with sublinear nonlinearity, arXiv: 1502.02221v [math.AP] 8 Fev 2015.