1 |
V. Ambrosio, Ground states for superlinear fractional Schrodinger equations in , Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 745-756. https://doi.org/10.5186/aasfm.2016.4147
DOI
|
2 |
V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations 2016 (2016), Paper No. 151, 12 pp.
|
3 |
V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrodinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 1, 127-152. https://doi.org/10.4171/RLM/797
DOI
|
4 |
P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981-1012. https://doi.org/10.1016/0362-546X(83)90115-3
DOI
|
5 |
T. Bartsch, Z. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, in: Handbook of Differential equations-Stationary Partial Differential Equations, Vol. 2, Elsevier, 2005, 1-55.
|
6 |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. https://doi.org/10.1007/BF00250555
DOI
|
7 |
C. Chen, Infinitely many solutions for fractional Schrodinger equations in , Electron. J. Differential Equations 2016 (2016), Paper No. 88, 15 pp.
|
8 |
J. Chen, X. Tang, and H. Luo, Infinitely many solutions for fractional Schrodinger-Poisson systems with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 97, 13 pp.
|
9 |
B. Cheng and X. Tang, New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math. 13 (2016), no. 5, 3373-3387. https://doi.org/10.1007/s00009-016-0691-y
DOI
|
10 |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
|
11 |
E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
DOI
|
12 |
X. Du and A. Mao, Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schrodinger equations, J. Funct. Spaces 2017 (2017), Art. ID 3793872, 7 pp. https://doi.org/10.1155/2017/3793872
|
13 |
H. Jin and W. Liu, Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth, Electron. J. Differential Equations 2017 (2017), Paper No. 80, 19 pp.
|
14 |
P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. https://doi.org/10.1017/S0308210511000746
DOI
|
15 |
M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math. 62 (2009), no. 2, 198-214. https://doi.org/10.1002/cpa.20253
DOI
|
16 |
L. J. Jia, B. Ge, Y. X. Cui, and L. L. Sun, Multiplicity solutions of a class fractional Schrodinger equations, Open Math. 15 (2017), no. 1, 1010-1023. https://doi.org/10.1515/math-2017-0084
DOI
|
17 |
S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrodinger equation in , Appl. Math. Lett. 61 (2016), 156-162. https://doi.org/10.1016/j.aml.2016.06.001
DOI
|
18 |
N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
DOI
|
19 |
N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
DOI
|
20 |
M. Du and L. Tian, Infinitely many solutions of the nonlinear fractional Schrodinger equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 10, 3407-3428. https://doi.org/10.3934/dcdsb.2016104
DOI
|
21 |
C. E. Torres Ledesma, Existence and concentration of solutions for a non-linear fractional Schrodinger equation with steep potential well, Commun. Pure Appl. Anal. 15 (2016), no. 2, 535-547. https://doi.org/10.3934/cpaa.2016.15.535
DOI
|
22 |
P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https://doi.org/10.1090/cbms/065
|
23 |
S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in , J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990
DOI
|
24 |
S. Secchi, On fractional Schrodinger equations in RN without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 19-41.
|
25 |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. http://projecteuclid.org/euclid.cmp/1103900983
DOI
|
26 |
K. Teng, Multiple solutions for a class of fractional Schrodinger equations in , Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008
DOI
|
27 |
H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 273-281. https://doi.org/10.1016/S1007-5704(03)00049-2
DOI
|
28 |
M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
|
29 |
P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631
DOI
|
30 |
M.-H. Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal. 74 (2011), no. 7, 2635-2646. https://doi.org/10.1016/j.na.2010.12.019
DOI
|
31 |
Y. Zhang, X. Tang, and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian equations with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 208, 14 pp.
|
32 |
H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in , J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660
|
33 |
J. Zhang, Existance and multiplicity results for the fractional Schrodinger-Poisson equations, arXiv 1507:01205v1 [Math.AP] 5 Jul 2015.
|
34 |
J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrodinger equations with sublinear nonlinearity, arXiv: 1502.02221v [math.AP] 8 Fev 2015.
|