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INFINITELY MANY SOLUTIONS FOR FRACTIONAL

SCHRÖDINGER EQUATION WITH SUPERQUADRATIC

CONDITIONS OR COMBINED NONLINEARITIES

Mohsen Timoumi

Abstract. We obtain infinitely many solutions for a class of fractional
Schrödinger equation, where the nonlinearity is superquadratic or involves

a combination of superquadratic and subquadratic terms at infinity. By

using some weaker conditions, our results extend and improve some ex-
isting results in the literature.

1. Introduction

In this paper, we consider the following fractional equation

(FS) (−∆)su+ V (x)u = f(x, u), x ∈ RN ,
where s ∈]0, 1[, N > 2s, (−∆)s stands for the fractional Laplacian, V ∈
C(RN ,R) and f ∈ C(RN × R,R).

Equation (FS) arises in the study of the fractional Schrödinger equation

(1.1) i
∂ψ

∂t
+ (−∆)sψ + V (x)ψ = f(x, ψ), x ∈ RN , t > 0,

when looking for standing waves, that is, solutions with the form ψ(x, t) =
eiωtu(x), where ω is a constant. This equation was introduced by Luskin [19,20]
and comes from an expansion of the Feynman path integral and from Brownian-
like to Levy-like quantum mechanical paths. In [11], the authors have proved
that (−∆)s reduces to the standard Laplacian −∆ as s → 1 (see Proposition
4.4 in [11]).

When s = 1, formally equation (FS) reduces to the classical Schrödinger
equation

(1.2) −∆u+ V (x)u = f(x, u), x ∈ RN .
Over the past decades, with the aid of critical point theory and variational
methods, for various conditions on the potential V (x) and the nonlinearity
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f(x, u), the existence and multiplicity of nontrivial solutions for the equa-
tion (1.2) have been extensively investigated in the literature, see for example
[5, 6, 22, 25, 29] but we do not even try to review the huge bibliography. Re-
cently there has been an increasing interested in the study of equation (FS),
from a pure mathematical point of view as well as from concrete applications,
since this equation naturally arises in several fields of research like phase tran-
sitions, finance, stratified materials, flame propagation, ultra-relativistic limits
of quantum mechanics and water waves. For more detailed introductions and
applications, we refer the reader to [10,15,28].

With the aid of variational methods, some authors have studied the existence
and multiplicity of nontrivial solutions for equation (FS) by assuming various
conditions on the potential V (x) and the nonlinearity f(x, u), see for exam-
ple [1–3,7–9,12–14,16–18,23,24,26,27,31–34] and the references cited therein.
Felmer et al. [14] considered the existence and regularity of positive solution
of (FS) with V (x) = 1 and s ∈]0, 1[ when f(x, u) has subscritical growth
and satisfies the so-called global Ambrosetti-Rabinowitz ((AR) in short) su-
perquadratic condition. That is, there exist constants ν > 2 and r > 0 such
that

0 < νF (x, u) ≤ f(x, u)u, ∀x ∈ RN , |u| ≥ r,
where F (x, u) =

∫ u
0
f(x, t)dt. Secchi [22] obtained the existence of ground

state solution of (FS) for s ∈]0, 1[ when V (x) → +∞ as |x| → +∞ and
(AR) condition holds, by using the Ekeland’s Variational Principle and the
Mountain Pass Theorem. In [26], Teng used Variant Fountain Theorems and
the Z2 version of Mountain Pass Theorem to establish the existence of infinitely
many nontrivial high-energy or small energy solutions for (FS). In this paper,
the nonlinearity is allowed to be superquadratic and the potential V (x) was
assumed to satisfy the following conditions

(V1) inf
x∈RN

V (x) > 0;

(V2) For any M > 0, there exists a constant r > 0 such that

lim
|y|→∞

meas
{
x ∈ RN : |x− y| ≤ r, V (x) ≤M

}
= 0,

where meas denotes the Lebesgue measure on the whole axis RN . J. Zhang and
W. Jiang [33] dealt with the case that f(x, u) is subquadratic and the potential
V satisfies the following condition

(V3) V ≥ 0,∃b > 0/Vb =
{
x ∈ RN : V (x) ≤ b

}
6= φ, meas(Vb) <∞,

Ω = intV −1({0}) 6= φ and Ω = V −1({0});
and obtained the existence of solution for (FS) by using a minimization theo-
rem.

Motivated by the previous papers, in this paper, we will establish some
new existence criteria to guarantee that problem (FS) has infinitely many
solutions under some assumptions on f(x, u), which are different from the (AR)
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condition. We are also concerned with the multiplicity of solutions of (FS)
under combined nonlinearities cases. Firstly, we deal with the case that f(x, u)
is superquadratic at infinity. Consider the following hypotheses:

(V ′1) inf
x∈RN

V (x) > −∞;

(H1) There exist constants a, b > 0 and 2 < p < 2∗s such that

|f(x, u)| ≤ a |u|+ b |u|p−1
, ∀(x, u) ∈ RN × R;

(H2) There exists a constant r > 0 such that F (x, u) ≥ 0 for all x ∈ RN and
|u| ≥ r, and

lim
|u|→∞

F (x, u)

|u|2
= +∞ for a.e. x ∈ RN ;

(H3) F (x,−u) = F (x, u), ∀(x, u) ∈ RN × R;

(H4) There exist constants C ≥ 0 and σ >
2∗s

2∗s−2 such that

f(x, u)u− 2F (x, u) ≥ 0, ∀(x, u) ∈ RN × R

and

|F (x, u)|σ ≤ C |u|2σ [f(x, u)u− 2F (x, u)], ∀x ∈ RN , |u| ≥ r,
where 2∗s = 2N

N−2s is the so-called “fractional critical exponent” and r is the

constant given in (H2);
(H ′4) There exist constants µ > 2 and γ > 0 such that

µF (x, u) ≤ f(x, u)u+ γu2, ∀(x, u) ∈ RN × R.

Our first main results read as follows.

Theorem 1.1. Assume that (V ′1), (V2) and (H1)-(H4) hold. Then (FS) has
infinitely many nontrivial solutions.

Theorem 1.2. Assume that (V ′1), (V2), (H1)-(H3) and (H ′4) hold. Then (FS)
has infinitely many nontrivial solutions.

Remark 1.3. Most of the above mentioned papers treat the superquadratic case
under the (AR) condition. Without this condition, we do not know whether a
Palais-Smale sequence is bounded. Note that the (AR) condition is not required
in our Theorem 1.1. In fact, let

F (x, u) = a(x)
[
(4 |u|2 − 1) ln(

1

2
+ |u|)− 2(

1

2
+ |u|)2 + 4 |u|+ 1

2
− ln 2

]
,

where a ∈ C(RN ,R) is such that 0 < infx∈RN a(x) ≤ supx∈RN a(x) < +∞. It

is clear that f(x, u) = ∂F
∂u (x, u) satisfies (H1)-(H3). It remains to verify (H4).

A classical computation shows that

f(x, u)u− 2F (x, u) = a(x)
[
(4 |u|2 − 1)

2 |u|
2 |u|+ 1

− 2 |u|+ 2 ln(
1

2
+ |u|) + 2 ln 2

]
.
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It is easy to check that f(x, u)u−2F (x, u) ≥ 0 for all (x, u) ∈ RN×R. Moreover,

for all σ >
2∗s

2∗s−2 , we have

(F (x, u)

|u|2
)2σ

[f(x, u)u− 2F (x, u)]−1 ∼=∞ (4a(x))σ−1

(
ln( 1

2 + |u|)
)σ

|u|2
,

which converges to 0 as |u| → ∞, uniformly in x ∈ RN . Hence there exist two
positive constants r, C such that(F (x, u)

|u|2
)2σ

≤ C[f(x, u)u− 2F (x, u)], ∀x ∈ RN , |u| ≥ r.

Therefore (H4) holds. However, we check easily that the (AR)-condition can
not be satisfied for any ν > 2. By Theorem 1.1, the corresponding fractional
Schrödinger equation (FS) possesses infinitely many nontrivial solutions.

Remark 1.4. Theorem 1.2 generalizes Theorem 1.3 in [13]. In fact, hypothesis
(H2) is weaker than hypothesis (f5) in [13, Theorem 1.3].

Remark 1.5. From (V ′1), we know that there exists a positive constant v0 such
that infx∈RN V (x) + v0 > 0. Let V (x) = V (x) + v0 and f(x, u) = f(x, u) + v0u.
Consider the following fractional Schrödinger equation

(FS) (−∆)su+ V (x)u = f(x, u), x ∈ RN .

It is easy to check that the hypotheses (H1)-(H4), (H ′4) still hold for f(x, u)
provided that those hold for f(x, u), and V satisfies the conditions (V1), (V2).
Hence, in our above results, we will always assume without loss of generality
that V satisfies (V1) instead of (V ′1).

Next, consider the equation (FS) involving a combination of superquadratic
and subquadratic terms at infinity. More precisely, assume that f(x, u) is of
the type f(x, u) = g(x, u) + h(x, u), where f, g : RN × R → R are continuous
functions and take the following conditions.
(H5) There exist constants 1 < γ < 2, 1 < σ < 2 and functions c0, a ∈
L

2
2−γ (RN ,R+) and b ∈ L

2
2−σ (RN ,R+) such that

c0(x) |u|γ ≤ g(x, u)u, |g(x, u)| ≤ a(x) |u|γ−1
+b(x) |u|σ−1

, a.e. x ∈ RN ,∀u ∈ R;

(H6) H(x, u) =
∫ u

0
h(x, s)ds ≥ 0 and there exist 2 < µ <

2∗s
2 + 1, c ∈

L2(RN ,R+) and d ∈ L∞(RN ,R+) such that

|h(x, u)| ≤ c(x) + d(x) |u|µ−1
, a.e. x ∈ RN ,∀u ∈ R;

(H7) There exist ρ > 2, 1 < δ < 2 and θ ∈ C(RN ,R+)
⋂
L

2
2−δ (RN ,R+) such

that
ρH(x, u)− h(x, u)u ≤ θ(x) |u|δ , a.e. x ∈ RN ,∀u ∈ R.

Theorem 1.6. Assume that (V1), (V2), (H3) and (H5)-(H7) are satisfied.
Then the equation (FS) possesses infinitely many small energy solutions.
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Remark 1.7. Obviously, Theorem 1.6 generalizes Theorem 1.2 in [13], Theorem
1.1 in [33] and Theorem 1.2 in [34]. In fact, taking h(x, u) = 0, Theorem 1.2 in
[13] and Theorem 1.1 in [33] become special cases of Theorem 1.6. Similarly,
taking g(x, u) = 0, Theorem 1.2 in [34] becomes a special case of Theorem 1.6.

Example 1.8. Let F (x, u) = G(x, u) +H(x, u) where

G(x, u) =
( 1

1 + |x|2
)N

3 |u|
4
3 +

( 1

1 + |x|2
)N

6 |u|
5
3 ,

H(x, u) =
( 1

1 + |x|2
)N[
|u|

4
3 ln(1 + |u|) + |u|3

]
.

By a classical computation, we check that (H3), (H5)-(H7) are satisfied. Hence
the corresponding equation (FS) possesses infinitely many solutions.

The remainder of this paper is organized as follows. In Section 2, some
preliminary results are presented. In Section 3, we give the proofs of Theorems
1.1, 1.2. Section 4 is devoted to the proof of Theorem 1.6.

2. Preliminaries

In the sequel, s will denote a fixed number, s ∈]0, 1[, we denote by ‖·‖q the

usual norm of the space Lq(RN ). In terms of finite differences, the nonhomo-
geneous Sobolev space can be defined as follows

Hs(RN ) =

{
u ∈ L2(RN ) :

|u(x)− u(y)|
|x− y|

N
2 +s

∈ L2(RN × RN )

}
.

This space is endowed with the natural norm

‖u‖Hs =

(∫
RN
|u|2 dx+

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

,

while

|u|Hs =

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

is the Gagliardo (semi) norm. The space Hs(RN ) is a Hilbert space with the
inner product〈

u, v
〉

=

∫
RN

u(x)v(x)dx+

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy.

The space Hs(RN ) can be described by means of the Fourier transform. Indeed,
it is defined by

Hs(RN ) =

{
u ∈ L2(RN ) :

∫
RN

(1 + |ξ|2)s |û(ξ)|2s dξ <∞
}
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and the norm can be equivalently written by

‖u‖Hs =
(∫

RN
|ξ|2s |û(ξ)|2 dξ +

∫
RN
|u(x)|2 dx

) 1
2

.

Furthermore, we know that ‖·‖Hs is equivalent to the norm

‖u‖s =
(∫

RN

∣∣(−∆)
s
2u(x)

∣∣2 dx+

∫
RN
|u(x)|2 dx

) 1
2

.

Lemma 2.1 ([11]). Let s ∈]0, 1[ such that 2s < N . Then there exists a positive
constant C = C(N, s) such that for any measurable and compactly supported
function u : RN → R, we have

‖u‖2∗s ≤ C
∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Consequently, the space Hs(RN ) is continuously embedded in Lq(RN ) for any
q ∈ [2, 2∗s ]. Moreover, the embedding Hs(RN ) ↪→ Lq(RN ) is locally compact
whenever q ∈ [2, 2∗s[.

In this section, we assume that V satisfies (V1) and we consider the subspace

E =

{
u ∈ Hs(RN ) :

∫
RN
|ξ|2s |û(ξ)|2 dξ +

∫
RN

V (x) |u(x)|2 <∞
}
.

Then E is a Hilbert space with the inner product〈
u, v
〉

=

∫
RN
|ξ|2s û(ξ)v̂(ξ)dξ +

∫
RN

V (x)u(x)v(x)dx

and the associated norm

‖u‖ =
(∫

RN
|ξ|2s |û(ξ)|2 dξ +

∫
RN

V (x) |u(x)|2 dx
) 1

2

.

Furthermore, we know that ‖·‖ is equivalent to the norm

‖u‖ =

(∫
RN

[
∣∣(−∆)

s
2u
∣∣2 + V (x) |u(x)|2]dx

) 1
2

and the corresponding inner product is〈
u, v
〉

=

∫
RN

[(−∆)
s
2u(x)(−∆)

s
2 v(x) + V (x)u(x)v(x)]dx.

In view of the assumptions (V1) and (V2), some compactness embedding can
be deduced as follows.

Lemma 2.2 ([26]). The Hilbert space E is continuously embedded into Lq(RN )
for 2 ≤ q ≤ 2∗s and compactly embedded into Lq(RN ) for 2 ≤ q < 2∗s.

It follows directly from Lemma 2.2 that there are constants ηq > 0 such that

(2.1) ‖u‖q ≤ ηq ‖u‖ , ∀u ∈ E, ∀q ∈ [2, 2∗s].
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Definition. We say u ∈ E is a weak solution of (FS) if∫
RN
|ξ|2s û(ξ)v̂(ξ)dξ +

∫
RN

V (x)u(x)v(x)dx =

∫
RN

f(x, u)dx, ∀v ∈ E.

In order to prove our main results, we shall use the following critical point
theorems.

Definition. Let E be an infinite dimensional Banach space. We say that
ψ ∈ C1(E,R) satisfies the

a) Palais-Smale condition at level c (we denote (PS)c condition in short) if
any sequence (un) ⊂ E satisfying

ψ(un)→ c and ψ′(un)→ 0 as n→∞
possesses a convergent subsequence,

b) Cerami’s condition at level c (we denote (C)c condition in short) if any
sequence (un) ⊂ E satisfying

ψ(un)→ c, ‖ψ′(un)‖ (‖un‖+ 1)→ 0 as n→∞
possesses a convergent subsequence.

Lemma 2.3 (Symmetric Mountain Pass Theorem, [21]). Let E = Y ⊕ Z be
an infinite dimensional space where Y is finite dimensional. If ψ ∈ C1(E,R)
satisfies the (PS)c-condition for all level c > 0 and

(1) ψ(0) = 0, ψ(−u) = ψ(u), ∀u ∈ E;

(2) ψ|∂Bρ∩Z ≥ α for some ρ, α > 0;

(3) for any finite dimensional subspace Ẽ ⊂ E, there is a positive constant

R = R(Ẽ) such that ψ(u) ≤ 0 on Ẽ \BR.
Then ψ possesses an unbounded sequence of critical values.

Remark 2.4. As shown in [4], a deformation lemma can be proved with (C)c-
condition replacing the (PS)c-condition, and it turns out that Lemma 2.3 still
holds true with the (C)c-condition instead of the (PS)c-condition.

Now, let E be a Banach space with the norm ‖·‖ and E = ⊕j∈NXj , where
Xj is a finite dimensional subspace of E. For each k ∈ N, let Yk = ⊕kj=0Xj ,

Zk = ⊕∞j=kXj . The functional ψ ∈ C1(E,R) is said to satisfy the (PS)∗

condition if for any sequence (uj) for which (ψ(uj)) is bounded, uj ∈ Ykj for
some kj with kj → ∞ and (ψ|Ykj )′(uj) → 0 as j → ∞, has a subsequence

converging to a critical point of ψ.

Lemma 2.5 (Dual Fountain Theorem, [30]). Suppose that the functional ψ ∈
C1(E,R) is even and satisfies the (PS)∗ condition. Assume that for each
sufficiently large integer k, there exist 0 < rk < ρk such that

(a) ak = inf
u∈Zk,‖u‖=ρk

ψ(u) ≥ 0;
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(b) bk = max
u∈Yk,‖u‖=rk

ψ(u) < 0;

(c) dk = inf
u∈Zk,‖u‖≤ρk

ψ(u)→ 0 as k →∞.

Hence ψ has a sequence of negative critical values converging to zero.

3. Proof of Theorems 1.1, 1.2

Consider the functional ψ associated to the equation (FS)

ψ(u) =
1

2

(∫
RN
|ξ|2s |û(ξ)|2 +

∫
RN

V (x) |u(x)|2 dx
)
−
∫
RN

F (x, u)dx

=
1

2
‖u‖2 −

∫
RN

F (x, u)dx

defined on the space E introduced in Section 2. Under the assumptions of
Theorems 1.1, 1.2, it is well-known that ψ ∈ C1(E,R) and critical points of ψ
are solutions of (FS).

Let (ej)j∈N be an orthonormal basis of E, we set

Ym = span {e1, . . . , em} , Zm = span {em+1, . . .}, m ∈ N.

Then E = Ym ⊕ Zm.

Lemma 3.1. Assume that (V1), (V2) and (H1) are satisfied. Then there exist
positive constants m0, α, ρ such that

ψ|∂Bρ∩Zm0
≥ α.

Proof. Note that by (H1), we have

(3.1) |F (x, u)| ≤ a

2
|u|2 +

b

p
|u|p , ∀(x, u) ∈ RN × R.

For any m ∈ N, let

(3.2) l2(m) = sup
u∈Zm\{0}

‖u‖2
‖u‖

and lp(m) = sup
u∈Zm\{0}

‖u‖p
‖u‖

.

It is clear that l2(m + 1) ≤ l2(m), so l2(m) → l ≥ 0 as m → ∞. For any
m ∈ N, there exists um ∈ Zm such that ‖um‖ = 1 and ‖um‖2 ≥

1
2 l2(m). By

the definition of Zm, um ⇀ 0 in E. By Lemma 2.2, we can assume that um → 0
in L2(RN ). Hence, we have l = 0, that is l2(m) → 0 as m → ∞. Similarly
lp(m)→ 0 as m→∞. Therefore, we can choose a larger integer m0 such that

(3.3) ‖u‖22 ≤
1

2a
‖u‖2 , ‖u‖pp ≤

p

4b
‖u‖p , ∀u ∈ Zm0

.
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Then by (3.1) and (3.3), we have

ψ(u) =
1

2
‖u‖2 −

∫
RN

F (x, u)dx

≥ 1

2
‖u‖2 −

∫
RN

(
a

2
|u|2 +

b

p
|u|p)dx

≥ 1

2
‖u‖2 − a

2
‖u‖22 −

b

p
‖u‖pp

≥ 1

2
‖u‖2 − 1

4
‖u‖2 − 1

4
‖u‖p

=
1

4
(‖u‖2 − ‖u‖p)

=
2p−2 − 1

2p+2
= α, ∀u ∈ Zm0

, ‖u‖ =
1

2
= ρ,

which finish the proof of Lemma 3.1. �

To apply Lemma 2.3, we will take E = Y ⊕ Z with Y = Ym0 and Z = Zm0 ,
where m0 is introduced in Lemma 3.1.

Lemma 3.2. Assume that (V1), (V2), (H1) and (H2) are satisfied. Then for

any finite dimensional subspace Ẽ ⊂ E, there is a constant R = R(Ẽ) > 0 such
that

(3.4) ψ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R.

Proof. In order to prove (3.4), we only need to prove

(3.5) ψ(u)→ −∞ as ‖u‖ → ∞, u ∈ Ẽ.

Assume by contradiction that there exists a sequence (un) ⊂ Ẽ with ‖un‖ → ∞
as n→∞ and ψ(un) ≥ −M for some constant M > 0, ∀n ∈ N. Let vn = un

‖un‖ ,

then ‖vn‖ = 1. Going to a subsequence if necessary, we can assume that vn ⇀ v

in E. Since Ẽ is finite dimensional, then vn → v in E, thus ‖v‖ = 1, and up to
a subsequence, Lemma 2.2 implies that vn(x)→ v(x) a.e. x ∈ RN . Let

Λn(c, d) =
{
x ∈ RN : c ≤ |un(x)| < d

}
, 0 ≤ c < d

and

Λ =
{
x ∈ RN : v(x) 6= 0

}
.

For any x ∈ Λ, we have limn→∞ |un(x)| = limn→∞ ‖un‖ |vn(x)| = +∞. Hence
x ∈ Λn(r,∞) for n large enough, where r is the constant given in (H2). Prop-
erty (3.1), Lemma 2.2, assumption (H2) and Fatou’s lemma imply

0 = lim
n→∞

−M
‖un‖2

≤ ψ(un)

‖un‖2

= lim
n→∞

[
1

2
−
∫
RN

F (x, un)

|un|2
|vn|2 dx](3.6)
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= lim
n→∞

[
1

2
−
∫

Λn(0,r)

F (x, un)

|un|2
|vn|2 dx−

∫
Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx]

≤ lim sup
n→∞

[
1

2
+ (

a

2
+
b

p
rp−2)

∫
RN
|vn|2 dx−

∫
Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx]

≤ 1

2
+ (

a

2
+
b

p
rp−2)η2

2 − lim inf
n→∞

∫
RN

F (x, un)

|un|2
χΛn(r,∞) |vn|

2
dx

≤ 1

2
+ (

a

2
+
b

p
rp−2)η2

2 −
∫
RN

lim inf
n→∞

F (x, un)

|un|2
χΛn(r,∞) |vn|

2
dx

= −∞,

where η2 is given in (2.1). It is a contradiction. Hence (3.5) is satisfied and the
proof of Lemma 3.2 is finished. �

3.1. Proof of Theorem 1.1

By (H3) and Lemmas 3.1, 3.2, ψ satisfies the conditions (1), (2) and (3) of
Lemma 2.3. It remains to prove the Cerami’s condition.

Lemma 3.3. Assume that (V1), (V2), (H1), (H2) and (H4) are satisfied. Then
ψ satisfies the (C)c-condition for any level c > 0.

Proof. Let c be a positive real number and (un) ⊂ E be a (C)c-sequence, that
is

ψ(un)→ c and ‖ψ′(un)‖ (1 + ‖un‖)→ 0 as n→∞.
Assume by contradiction that (un) is not bounded, then up to a subsequence,
we can assume that ‖un‖ → ∞ as n → ∞. Let vn = un

‖un‖ , then ‖vn‖ = 1.

Taking a subsequence if necessary, then vn ⇀ v in E and Lemma 2.2 implies
that vn → v in Lq(RN ) for q = 2, p, 2σ′ = 2σ

σ−1 and vn → v a.e. on RN .
If v 6= 0, Hölder’s inequality implies as above

0 = lim
n→∞

ψ(un)

‖un‖2
= lim
n→∞

[
1

2
−
∫
RN

F (x, un)

|un|2
|vn|2 dx] ≤ −∞,

which is a contradiction. So (un) is bounded.
If v = 0, on one hand, since ψ(un) → c and ‖un‖ → ∞, then it is easy to

see that

(3.7) lim sup
n→∞

∫
RN

F (x, un)

|un|2
|vn|2 dx ≥

1

2
.

On the other hand, for the constant r given in (H4), (3.1) implies

(3.8)

∫
Λn(0,r)

F (x, un)

|un|2
|vn|2 dx ≤ (

a

2
+
b

p
rp−2)

∫
Λn(0,r)

|vn|2 dx

≤ (
a

2
+
b

p
rp−2) ‖vn‖22 → 0.
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Now, there exists a positive constant c1 such that for all integer n, one has∫
RN

[
1

2
f(x, un)un − F (x, un)]dx = ψ(un)− 1

2
ψ′(un)un ≤ c1

which with Hölder’s inequality and assumption (H4) implies

(3.9)

∫
Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx

≤ (

∫
Λn(r,∞)

(
F (x, un)

|un|2
)σdx)

1
σ (

∫
Λn(r,∞)

|vn|2σ
′
dx)

1
σ′

≤ (2C)
1
σ (

∫
Λn(r,∞)

[
1

2
f(x, un)un − F (x, un)]dx)

1
σ (

∫
Λn(r,∞)

|vn|2σ
′
dx)

1
σ′

≤ (2C(c1))
1
σ ‖vn‖22σ′ → 0.

Combining (3.8) and (3.9) yields∫
RN

F (x, un)

|un|2
|vn|2 dx =

∫
Λn(0,r)

F (x, un)

|un|2
|vn|2 dx+

∫
Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx

→ 0

which contradicts (3.7). Hence (un) is bounded.
Up to a subsequence, Lemma 2.2 implies that un → u in both L2(RN ) and

Lp(RN ). It follows from (H1) and Hölder’s inequality that∣∣∣∣∫
RN

f(x, un)(un − u)dx

∣∣∣∣ ≤ ∫
RN

(a |un|+ b |un|p−1
) |un − u| dx

≤ a
∫
RN
|un| |un − u| dx+ b

∫
RN
|un|p−1 |un − u| dx

≤ a ‖un‖2 ‖un − u‖2 + b ‖un‖p−1
p ‖un − u‖p → 0.

Therefore, we have

0 = lim
n→∞

ψ′(un)(un − u)

= lim
n→∞

〈
un, un − u

〉
− lim
n→∞

∫
RN

f(x, un)(un − u)dx

= lim
n→∞

‖un‖2 − ‖u‖2 .

That is limn→∞ ‖un‖2 = ‖u‖2, which with un ⇀ u in E implies

‖un − u‖2 =
〈
un − u, un − u

〉
→ 0.

Hence (un) possesses a convergent subsequence in E. Thus ψ satisfies the
(C)c-condition. The proof of Lemma 3.3 is completed. �

Consequently, Lemma 2.3 with Remark 2.4 imply that the functional ψ
possesses an unbounded sequence of critical points. Therefore, the fractional
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Schrödinger equation (FS) possesses infinitely many solutions. The proof of
Theorems 1.1 is finished.

3.2. Proof of Theorem 1.2

Lemma 3.4. Assume that (V1), (V2) and (H ′4) are satisfied. Then for all
positive constant c, ψ satisfies the (C)c-condition.

Proof. Let c be a positive real number and (un) ⊂ E be a (C)c-sequence, that
is

ψ(un)→ c and ‖ψ′(un)‖ (1 + ‖un‖)→ 0 as n→∞.
Assume by contradiction that (un) is not bounded, then up to a subsequence,
we can assume that ‖un‖ → ∞ as n→∞. Let vn = un

‖un‖ , then ‖vn‖ = 1. By

(H ′4), there exists a positive constant c2 such that for all integer n, one has

c2 ≥ ψ(un)− 1

µ
ψ′(un)un

=
µ− 2

2µ
‖un‖2 +

∫
RN

[
1

µ
f(x, un)un − F (x, un)]dx

≥ µ− 2

2µ
‖un‖2 −

γ

µ
‖un‖22 .

It follows that

(3.10) lim sup
n→∞

‖vn‖22 ≥
µ− 2

2γ
.

Since ‖vn‖ = 1, then passing to a subsequence, vn ⇀ v in E and Lemma 2.2
implies that vn → v in L2(RN ), which with (3.10) implies that v 6= 0. Similar
to (3.6), we get a contradiction. Therefore (un) is bounded. We conclude as in
the proof of Lemma 3.3 that (un) possesses a convergent subsequence. Hence
ψ satisfies the (C)c-condition. The proof of Lemma 3.4 is completed. �

Similarly to the proof of Theorem 1.1, we deduce that the functional ψ
possesses an unbounded sequence of critical points and the proof of Theorem
1.2 is finished.

4. Proof of Theorem 1.6

Consider the functional ψ associated to the equation (FS)

ψ(u) =
1

2

(∫
RN
|ξ|2s |û(ξ)|2 +

∫
RN

V (x) |u(x)|2 dx
)
−
∫
RN

F (x, u)dx

=
1

2
‖u‖2 −

∫
RN

F (x, u)dx

defined in Section 3. Here, F (x, u) = G(x, u) + H(x, u) with G(x, u) =∫ u
0
g(x, s)ds.



INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION 837

Lemma 4.1. Assume that (V1), (V2), (H5) and (H6) are satisfied. If un ⇀ u
in E, then

(4.1) f(·, un)→ f(·, u) in L2(RN ).

Proof. Arguing indirectly, by Lemma 2.2, there exists a subsequence unj such
that

(4.2) unj → u in both L2(RN ) and L2(µ−1)(RN ) and unj → u a.e. in RN

as j →∞ and

(4.3)

∫
RN

∣∣f(x, unj (x))− f(x, u(x))
∣∣2 dx ≥ ε0, ∀j ∈ N,

for some positive constant ε0. By (4.2) and up to a subsequence if necessary,
we can assume that

∞∑
j=1

∥∥unj − u∥∥L2 <∞ and

∞∑
j=1

∥∥unj − u∥∥L2(µ−1) <∞.

Let w(x) =
∑∞
j=1

∣∣unj (x)− u(x)
∣∣ for all x ∈ RN . Then

w ∈ L2(RN )
⋂
L2(µ−1)(RN ).

By (H5) and (H6), there holds for all j ∈ N and x ∈ RN

(4.4)

∣∣f(x, unj )− f(x, u)
∣∣2 ≤ ∣∣f(x, unj )

∣∣+ |f(x, u)|2

≤
[ ∣∣g(x, unj )

∣∣+
∣∣h(x, unj )

∣∣+ |g(x, u)|+ |h(x, u)|
]2

≤
[
a
∣∣unj ∣∣γ−1

+ b
∣∣unj ∣∣σ−1

+ a |u|γ−1
+ b |u|σ−1

+ 2c+ d
∣∣unj ∣∣µ−1

+ d |u|µ−1
]2

≤
[
a(
∣∣unj − u∣∣+ |u|)γ−1 + b(

∣∣unj − u∣∣+ |u|)σ−1 + a |u|γ−1
+ b |u|σ−1

+ 2c+ d(
∣∣unj − u∣∣+ |u|)µ−1 + d |u|µ−1

]2
≤
[
a(w + |u|)γ−1 + b(w + |u|)σ−1 + a |u|γ−1

+ b |u|σ−1

+ 2c+ d(w + |u|)µ−1 + d |u|µ−1
]2

≤ c3

[
a2w2(γ−1) + a2 |u|2(γ−1)

+ b2w2(σ−1) + b2 |u|2(σ−1)

+ c2 + d2w2(µ−1) + d2 |u|2(µ−1)
]

= k(x),

where c3 is a positive constant. It is easy to see that k ∈ L1(RN ). Hence, com-
bining (4.2) and (4.4), Lebesgue’s Dominated Convergence Theorem implies

lim
j→∞

∫
RN

∣∣f(x, unj (x))− f(x, u(x))
∣∣2 dx = 0,
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which contradicts with (4.3). Hence (4.1) is true. �

It is well known that under the assumptions of Theorem 1.6, ψ ∈ C1(E,R).
Moreover, ψ : E → E∗ is compact and critical points of ψ on E are classical
solutions for equation (FS).

In the next, we shall prove our Theorem 1.6 by applying Lemma 2.5. Choose
a completely orthonormal basis (ej) of E and define Xj = Rej , then Yk and
Zk can be defined as in Section 2. By (H3), ψ ∈ C1(E,R) is even. In the
following, we will check that all the conditions of Lemma 2.4 are satisfied.

Lemma 4.2. Assume that (V1), (V2), (H5) and (H7) are satisfied. Then ψ
satisfies the (PS)∗-condition.

Proof. Let (uj) be a (PS)∗-sequence, that is, (ψ(uj)) is bounded, uj ∈ Ykj for
some kj with kj → ∞ and (ψ|Ykj )′(uj) → 0 as j → ∞. We will show that

(uj) is bounded in E. By virtue of (2.1), (H5) and (H7), there exists a positive
constant M such that

ρM +M ‖uj‖ ≥ ρψ(uj)− ψ′(uj)uj

= (
ρ

2
− 1) ‖uj‖2 +

∫
RN

[f(x, uj)uj − ρF (x, uj)]dx

= (
ρ

2
− 1) ‖uj‖2 +

∫
RN

[g(x, uj)uj − ρG(x, uj)]dx

+

∫
RN

[h(x, uj)uj − ρH(x, uj)]dx

≥ (
ρ

2
− 1) ‖uj‖2 −

∫
RN

[a(x) |uj |γ + b(x) |uj |σ]dx

− ρ
∫
RN

[
a(x)

γ
|uj |γ +

b(x)

σ
|uj |σ]dx−

∫
RN

θ(x) |uj |δ dx

≥ (
ρ

2
− 1) ‖uj‖2 − (1 +

ρ

γ
) ‖a‖ 2

2−γ
‖uj‖γ2

− (1 +
ρ

σ
) ‖b‖ 2

2−σ
‖uj‖σ2 − ‖θ‖ 2

2−δ
‖uj‖δ2

≥ (
ρ

2
− 1) ‖uj‖2 − (1 +

ρ

γ
)ηγ2 ‖a‖ 2

2−γ
‖uj‖γ

− (1 +
ρ

σ
)ησ2 ‖b‖ 2

2−σ
‖uj‖σ − ‖θ‖ 2

2−δ
ηδ2 ‖uj‖

δ
.

Since ρ > 2 and γ, σ, δ < 2, it follows that (uj) is bounded in E.
From the reflexivity of E and up to a subsequence if necessary, we may

assume that uj ⇀ u in E, for some u ∈ E. Now, we have

(4.5) ‖uj − u‖2 = (ψ′(uj)−ψ′(u))(uj−u)+

∫
RN

(f(x, uj)−f(x, u))(uj−u)dx.

It is clear that

(4.6) (ψ′(uj)− ψ′(u))(uj − u)→ 0 as j →∞.
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By Hölder’s inequality, (2.1) and Lemma 4.1, one has

(4.7)

∣∣∣∣∫
RN

(f(x, uj)− f(x, u))(uj − u)dx

∣∣∣∣ ≤ ‖f(·, uj)− f(·, u)‖2 ‖uj − u‖2

≤ η2 ‖f(·, uj)− f(·, u)‖2 ‖uj − u‖
→ 0 as j →∞.

Combining (4.5)-(4.7), we deduce that uj → u in E and the proof of Lemma
4.2 is completed. �

Lemma 4.3. Assume that (V1), (V2), (H5) and (H6) are satisfied. Then for
any sufficiently large k ∈ N, there exist ρk > 0 such that

(4.8) ak = inf
u∈Zk,‖u‖=ρk

ψ(u) ≥ 0.

Proof. Let l2(k) be defined in Lemma 3.1. By the Mean Value Theorem, (H5),
(H6) and (2.1), we have for any u ∈ Zk

(4.9)

ψ(u) =
1

2
‖u‖2 −

∫
RN

F (x, u)dx

≥ 1

2
‖u‖2 −

∫
RN

[
1

γ
a |u|γ +

1

σ
b |u|σ]dx−

∫
RN

[c |u|+ 1

µ
d |u|µ]dx

≥ 1

2
‖u‖2 − 1

γ
‖a‖ 2

2−γ
‖u‖γ2 −

1

σ
‖b‖ 2

2−σ
‖u‖σ2

− ‖c‖2 ‖u‖2 −
1

µ
‖d‖∞ ‖u‖

µ
µ

≥ 1

2
‖u‖2 − 1

γ
lγ2 (k) ‖a‖ 2

2−γ
‖u‖γ − 1

σ
lσ2 (k) ‖b‖ 2

2−σ
‖u‖σ

− l2(k) ‖c‖2 ‖u‖ −
1

µ
ηµµ ‖d‖∞ ‖u‖

µ
.

In view of (4.9), µ > 2 and γ, σ > 1, one has

(4.10) ψ(u) ≥ 1

4
‖u‖2 −

( 1

γ
lγ2 (k) ‖a‖ 2

2−γ
+

1

σ
lσ2 (k) ‖b‖ 2

2−σ
+ l2(k) ‖c‖2

)
‖u‖

for ‖u‖ ≤ inf

{
1,
(

µ
4‖d‖∞η

µ
µ

) 1
µ−2

}
. Let ρk = 8

(
1
γ l
γ
2 (k) ‖a‖ 2

2−γ
+ 1
σ l
σ
2 (k) ‖b‖ 2

2−σ
+

l2(k) ‖c‖2
)

, it is easy to see that ρk → 0 as k →∞. Thus, for sufficiently large

integer k, (4.10) implies

ak ≥
1

8
ρ2
k > 0.

The proof of Lemma 4.3 is completed. �

Lemma 4.4. Assume that (V1), (V2), (H5) and (H6) are satisfied. Then

(4.11) dk = inf
u∈Zk,‖u‖≤ρk

ψ(u)→ 0 as k →∞.
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Proof. By (4.10), for any u ∈ Zk, we have

(4.12) ψ(u) ≥ −
( 1

γ
lγ2 (k) ‖a‖ 2

2−γ
+

1

σ
lσ2 (k) ‖b‖ 2

2−σ
+ l2(k) ‖c‖2

)
‖u‖ .

Therefore, we get with ‖u‖ ≤ ρk

(4.13) 0 ≥ dk ≥ −
( 1

γ
lγ2 (k) ‖a‖ 2

2−γ
+

1

σ
lσ2 (k) ‖b‖ 2

2−σ
+ l2(k) ‖c‖2

)
ρk.

Since l2(k), ρk → 0 as k →∞, one has dk → 0 as k →∞. The proof of Lemma
4.4 is completed. �

Lemma 4.5. Assume that (V1), (V2), (H5) and (H6) are satisfied. Then, for
all integer k, there exists 0 < rk < ρk such that

(4.14) bk = inf
u∈Yk,‖u‖=rk

ψ(u) < 0, ∀k ∈ N.

Proof. Firstly, we claim that there exists ε > 0 such that

(4.15) meas(
{
x ∈ RN : c0(x) |u(x)|γ ≥ ε ‖u‖γ

}
) ≥ ε, ∀u ∈ Yk \ {0} .

If not, there exists a sequence (un) ⊂ Yk with ‖un‖ = 1 such that

(4.16) meas(

{
x ∈ RN : c0(x) |un(x)|γ ≥ 1

n

}
) ≤ 1

n
.

Since dimYk < ∞, it follows from the compactness of the unit sphere of Yk
that there exists a subsequence, say (un) such that (un) converges to some
u ∈ Yk. Hence, we have ‖u‖ = 1. Since all norms are equivalent in the finite-
dimensional space Yk, we have un → u in L2(RN ). By the Hölder’s inequality,
one has

(4.17)

∫
RN

c0(x) |un − u|γ dx ≤ ‖c0‖ 2
2−γ

(∫
RN
|un − u|2 dx

) γ
2

→ 0 as n→∞.
Thus, there exists ε0 > 0 such that

(4.18) meas(
{
x ∈ RN : c0(x) |u(x)|γ ≥ ε0

}
) ≥ ε0.

In fact, if not, we have for all n ∈ N

meas(

{
x ∈ RN : c0(x) |u(x)|γ ≥ 1

n

}
) ≤ 1

n
.

Let n ∈ N, then for all integer m ≥ n

meas(

{
x ∈ RN : c0(x) |u(x)|γ ≥ 1

n

}
) ≤ meas(

{
x ∈ RN : c0(x) |u(x)|γ ≥ 1

m

}
)

≤ 1

m
which implies

meas(

{
x ∈ RN : c0(x) |u(x)|γ ≥ 1

n

}
) = 0.
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So ∫
RN

c0(x) |u|γ+2
dx =

∫
{x∈RN :c0(x)|u(x)|γ≤ 1

n}
c0(x) |u|γ+2

dx

≤ 1

n

∫
RN
|u|2 dx ≤ η2

2

n
‖u‖2 =

η2
2

n
→ 0 as n→∞.

Hence u = 0, which contradicts ‖u‖ = 1. Therefore (4.18) holds. Thus, define

Ω0 =
{
x ∈ RN : c0(x) |u(x)|γ ≥ ε0

}
, Ωn =

{
x ∈ RN : c0(x) |un(x)|γ ≤ 1

n

}
.

Combining (4.16) and (4.18), we obtain

meas(Ω0

⋂
Ωn) = meas(Ω0 \ (Ωcn

⋂
Ω0))

≥ meas(Ω0)−meas(Ωcn
⋂

Ω0) ≥ ε0 −
1

n
, ∀n ∈ N.

Let n be large enough such that ε0 − 1
n ≥

1
2ε0 and ε0

2γ−1 − 1
n ≥

ε0
2γ , we get∫

RN
c0(x) |un − u|γ dx ≥

∫
Ω0

⋂
Ωn

c0(x) |un − u|γ dx

≥ (
ε0

2γ−1
− 1

n
)meas(Ω0

⋂
Ωn)

≥ ε20
2γ+1

for all large integer n, which is a contradiction with (4.17). Therefore (4.15)
holds.

For the ε given in (4.15), let

(4.19) Ωu =
{
x ∈ RN : c0(x) |u(x)|γ ≥ ε ‖u‖γ

}
), ∀u ∈ Yk \ {0} .

By (4.15), we obtain

(4.20) meas(Ωu) ≥ ε, ∀u ∈ Yk \ {0} .

For any u ∈ Yk, by the Mean Value Theorem, (H5), (H6), (4.19) and (4.20),
one has

ψ(u) =
1

2
‖u‖2 −

∫
RN

F (x, u)dx

≤ 1

2
‖u‖2 − 1

γ

∫
RN

c0(x) |u|γ dx−
∫
RN

H(x, u)dx

≤ 1

2
‖u‖2 − 1

γ

∫
Ωu

c0(x) |u|γ dx

≤ 1

2
‖u‖2 − ε

γ
‖u‖γmeas(Ωu)

≤ 1

2
‖u‖2 − ε2

γ
‖u‖γ .
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Choose 0 < rk < inf
{
ρk, (

ε2

γ )
1

2−γ

}
. Direct computation shows that

bk = inf
u∈Yk,‖u‖=rk

ψ(u) ≤ 1

2
r2
k − r

2−γ
k rγk = −1

2
r2
k < 0.

The proof of Lemma 4.5 is completed. �

Lemmas 4.2-4.5 imply that all the conditions of Lemma 2.5 are satisfied.
Thus, by Lemma 2.5, ψ has infinitely many nontrivial critical points, that is,
equation (FS) possesses infinitely many solutions.
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